These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31294826)

  • 1. The combined use of
    Cui J; Zhu D; Su M; Tan D; Zhang X; Jia M; Chen G
    J Sci Food Agric; 2019 Nov; 99(14):6455-6461. PubMed ID: 31294826
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Shi T; Zhu M; Chen Y; Yan X; Chen Q; Wu X; Lin J; Xie M
    Food Chem; 2018 Mar; 242():308-315. PubMed ID: 29037694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of milk species using Raman spectroscopy coupled with partial least squares discriminant analysis in raw and pasteurized milk.
    Yazgan NN; Genis HE; Bulat T; Topcu A; Durna S; Yetisemiyen A; Boyaci IH
    J Sci Food Agric; 2020 Oct; 100(13):4756-4765. PubMed ID: 32458436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of chemometrics for detection and modeling of adulteration of fresh cow milk with reconstituted skim milk powder using voltammetric fingerpriting on a graphite/ SiO
    Nikolaou P; Deskoulidis E; Topoglidis E; Kakoulidou AT; Tsopelas F
    Talanta; 2020 Jan; 206():120223. PubMed ID: 31514874
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Cui C; Xia M; Chen J; Shi B; Peng C; Cai H; Jin L; Hou R
    Food Chem; 2023 Oct; 423():136305. PubMed ID: 37178597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of NMR-based milk metabolite analysis in milk authenticity identification.
    Li Q; Yu Z; Zhu D; Meng X; Pang X; Liu Y; Frew R; Chen H; Chen G
    J Sci Food Agric; 2017 Jul; 97(9):2875-2882. PubMed ID: 27790701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Authentication of animal origin of heparin and low molecular weight heparin including ovine, porcine and bovine species using 1D NMR spectroscopy and chemometric tools.
    Monakhova YB; Diehl BWK; Fareed J
    J Pharm Biomed Anal; 2018 Feb; 149():114-119. PubMed ID: 29112899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishing an untargeted-to-MRM liquid chromatography-mass spectrometry method for discriminating reconstituted milk from ultra-high temperature milk.
    Tan D; Zhang X; Su M; Jia M; Zhu D; Kebede B; Wu H; Chen G
    Food Chem; 2021 Feb; 337():127946. PubMed ID: 32927223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined chemometric analysis of (1)H NMR, (13)C NMR and stable isotope data to differentiate organic and conventional milk.
    Erich S; Schill S; Annweiler E; Waiblinger HU; Kuballa T; Lachenmeier DW; Monakhova YB
    Food Chem; 2015 Dec; 188():1-7. PubMed ID: 26041156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MCR-ALS analysis of
    Pérez Y; Casado M; Raldúa D; Prats E; Piña B; Tauler R; Alfonso I; Puig-Castellví F
    Anal Bioanal Chem; 2020 Sep; 412(23):5695-5706. PubMed ID: 32617759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR-Based Μetabolomics of the Lipid Fraction of Organic and Conventional Bovine Milk.
    Tsiafoulis CG; Papaemmanouil C; Alivertis D; Tzamaloukas O; Miltiadou D; Balayssac S; Malet-Martino M; Gerothanassis IP
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30889921
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Akhtar MT; Samar M; Shami AA; Mumtaz MW; Mukhtar H; Tahir A; Shahzad-Ul-Hussan S; Chaudhary SU; Kaka U
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiating Milk and Non-milk Proteins by UPLC Amino Acid Fingerprints Combined with Chemometric Data Analysis Techniques.
    Lu W; Lv X; Gao B; Shi H; Yu LL
    J Agric Food Chem; 2015 Apr; 63(15):3996-4002. PubMed ID: 25835028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid detection of milk adulteration using intact protein flow injection mass spectrometric fingerprints combined with chemometrics.
    Du L; Lu W; Cai ZJ; Bao L; Hartmann C; Gao B; Yu LL
    Food Chem; 2018 Feb; 240():573-578. PubMed ID: 28946313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-targeted detection of milk powder adulteration using Raman spectroscopy and chemometrics: melamine case study.
    Karunathilaka SR; Farris S; Mossoba MM; Moore JC; Yakes BJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Feb; 34(2):170-182. PubMed ID: 27841972
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Lau H; Laserna AKC; Li SFY
    Food Chem; 2020 Dec; 332():127424. PubMed ID: 32619947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic Discrimination of Different Rhodiola Species Using
    Li X; Wang X; Hong D; Zeng S; Su J; Fan G; Zhang Y
    Chem Pharm Bull (Tokyo); 2019 Feb; 67(2):81-87. PubMed ID: 30518724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variance of Commercial Powdered Milks Analyzed by Proton Nuclear Magnetic Resonance and Impact on Detection of Adulterants.
    Harnly J; Bergana MM; Adams KM; Xie Z; Moore JC
    J Agric Food Chem; 2018 Aug; 66(32):8478-8488. PubMed ID: 29697263
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Villa-Ruano N; Ramírez-Meraz M; Méndez-Aguilar R; Zepeda-Vallejo LG; Álvarez-Bravo A; Pérez-Hernández N; Becerra-Martínez E
    Food Res Int; 2019 May; 119():785-792. PubMed ID: 30884717
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.