BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31295035)

  • 1. Mechanosensitive pathways controlling translation regulatory processes in skeletal muscle and implications for adaptation.
    Kirby TJ
    J Appl Physiol (1985); 2019 Aug; 127(2):608-618. PubMed ID: 31295035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Ribosome Biogenesis in Skeletal Muscle Hypertrophy.
    Figueiredo VC; McCarthy JJ
    Physiology (Bethesda); 2019 Jan; 34(1):30-42. PubMed ID: 30540235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosome biogenesis in skeletal muscle: coordination of transcription and translation.
    von Walden F
    J Appl Physiol (1985); 2019 Aug; 127(2):591-598. PubMed ID: 31219775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosome specialization and its potential role in the control of protein translation and skeletal muscle size.
    Chaillou T
    J Appl Physiol (1985); 2019 Aug; 127(2):599-607. PubMed ID: 30605395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. It's not just about protein turnover: the role of ribosomal biogenesis and satellite cells in the regulation of skeletal muscle hypertrophy.
    Brook MS; Wilkinson DJ; Smith K; Atherton PJ
    Eur J Sport Sci; 2019 Aug; 19(7):952-963. PubMed ID: 30741116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical signal transduction in skeletal muscle growth and adaptation.
    Tidball JG
    J Appl Physiol (1985); 2005 May; 98(5):1900-8. PubMed ID: 15829723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical signals, IGF-I gene splicing, and muscle adaptation.
    Goldspink G
    Physiology (Bethesda); 2005 Aug; 20():232-8. PubMed ID: 16024511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanotransduction pathways in skeletal muscle hypertrophy.
    Yamada AK; Verlengia R; Bueno Junior CR
    J Recept Signal Transduct Res; 2012 Feb; 32(1):42-4. PubMed ID: 22171534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle and resistance exercise training; the role of protein synthesis in recovery and remodeling.
    McGlory C; Devries MC; Phillips SM
    J Appl Physiol (1985); 2017 Mar; 122(3):541-548. PubMed ID: 27742803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy.
    Figueiredo VC; Caldow MK; Massie V; Markworth JF; Cameron-Smith D; Blazevich AJ
    Am J Physiol Endocrinol Metab; 2015 Jul; 309(1):E72-83. PubMed ID: 25968575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interaction of biological factors with mechanical signals in bone adaptation: recent developments.
    Robling AG
    Curr Osteoporos Rep; 2012 Jun; 10(2):126-31. PubMed ID: 22538521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of mechanotransduction.
    Orr AW; Helmke BP; Blackman BR; Schwartz MA
    Dev Cell; 2006 Jan; 10(1):11-20. PubMed ID: 16399074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the roles of protein synthesis during skeletal muscle hypertrophy induced by exercise.
    Figueiredo VC
    Am J Physiol Regul Integr Comp Physiol; 2019 Nov; 317(5):R709-R718. PubMed ID: 31508978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of aging on cellular mechanotransduction.
    Wu M; Fannin J; Rice KM; Wang B; Blough ER
    Ageing Res Rev; 2011 Jan; 10(1):1-15. PubMed ID: 19932197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis.
    Zanchi NE; Lancha AH
    Eur J Appl Physiol; 2008 Feb; 102(3):253-63. PubMed ID: 17940791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle adaptation in response to mechanical stress in p130cas-/- mice.
    Akimoto T; Okuhira K; Aizawa K; Wada S; Honda H; Fukubayashi T; Ushida T
    Am J Physiol Cell Physiol; 2013 Mar; 304(6):C541-7. PubMed ID: 23325412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosome biogenesis: emerging evidence for a central role in the regulation of skeletal muscle mass.
    Chaillou T; Kirby TJ; McCarthy JJ
    J Cell Physiol; 2014 Nov; 229(11):1584-94. PubMed ID: 24604615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Regulation of Exercise-Induced Muscle Fiber Hypertrophy.
    Bamman MM; Roberts BM; Adams GR
    Cold Spring Harb Perspect Med; 2018 Jun; 8(6):. PubMed ID: 28490543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute resistance exercise activates rapamycin-sensitive and -insensitive mechanisms that control translational activity and capacity in skeletal muscle.
    West DW; Baehr LM; Marcotte GR; Chason CM; Tolento L; Gomes AV; Bodine SC; Baar K
    J Physiol; 2016 Jan; 594(2):453-68. PubMed ID: 26548696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between Ribosome Biogenesis and the Magnitude of Hypertrophy in Overloaded Skeletal Muscle.
    Nakada S; Ogasawara R; Kawada S; Maekawa T; Ishii N
    PLoS One; 2016; 11(1):e0147284. PubMed ID: 26824605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.