BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31295035)

  • 21. Blunted hypertrophic response in aged skeletal muscle is associated with decreased ribosome biogenesis.
    Kirby TJ; Lee JD; England JH; Chaillou T; Esser KA; McCarthy JJ
    J Appl Physiol (1985); 2015 Aug; 119(4):321-7. PubMed ID: 26048973
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone marrow mechanotransduction in porcine explants alters kinase activation and enhances trabecular bone formation in the absence of osteocyte signaling.
    Curtis KJ; Coughlin TR; Mason DE; Boerckel JD; Niebur GL
    Bone; 2018 Feb; 107():78-87. PubMed ID: 29154967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanotransduction and the regulation of protein synthesis in skeletal muscle.
    Hornberger TA; Esser KA
    Proc Nutr Soc; 2004 May; 63(2):331-5. PubMed ID: 15294051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in muscle mass with mechanical load: possible cellular mechanisms.
    Spangenburg EE
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):328-35. PubMed ID: 19448694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasticity of skeletal muscle mitochondria in response to contractile activity.
    Adhihetty PJ; Irrcher I; Joseph AM; Ljubicic V; Hood DA
    Exp Physiol; 2003 Jan; 88(1):99-107. PubMed ID: 12525859
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle.
    Hornberger TA; Mateja RD; Chin ER; Andrews JL; Esser KA
    J Appl Physiol (1985); 2005 Apr; 98(4):1562-6. PubMed ID: 15361519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The molecular bases of training adaptation.
    Coffey VG; Hawley JA
    Sports Med; 2007; 37(9):737-63. PubMed ID: 17722947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli.
    Goodman CA
    Rev Physiol Biochem Pharmacol; 2014; 166():43-95. PubMed ID: 24442322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Mechanotransduction in cardiovascular and skeletal muscle].
    Miyasaka K; Kida Y; Ogura T
    Seikagaku; 2009 Jun; 81(6):494-501. PubMed ID: 19618873
    [No Abstract]   [Full Text] [Related]  

  • 30. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions.
    Roberts MD; McCarthy JJ; Hornberger TA; Phillips SM; Mackey AL; Nader GA; Boppart MD; Kavazis AN; Reidy PT; Ogasawara R; Libardi CA; Ugrinowitsch C; Booth FW; Esser KA
    Physiol Rev; 2023 Oct; 103(4):2679-2757. PubMed ID: 37382939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Mechanisms of Skeletal Muscle Hypertrophy.
    Schiaffino S; Reggiani C; Akimoto T; Blaauw B
    J Neuromuscul Dis; 2021; 8(2):169-183. PubMed ID: 33216041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging role of extracellular vesicles in the regulation of skeletal muscle adaptation.
    Vechetti IJ
    J Appl Physiol (1985); 2019 Aug; 127(2):645-653. PubMed ID: 31194602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms.
    Goodman CA; Hornberger TA; Robling AG
    Bone; 2015 Nov; 80():24-36. PubMed ID: 26453495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.
    Al-Hadid Q; White J; Clarke S
    Biochem Biophys Res Commun; 2016 Feb; 470(3):552-557. PubMed ID: 26801560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased hypertrophic response with increased mechanical load in skeletal muscles receiving identical activity patterns.
    Eftestøl E; Egner IM; Lunde IG; Ellefsen S; Andersen T; Sjåland C; Gundersen K; Bruusgaard JC
    Am J Physiol Cell Physiol; 2016 Oct; 311(4):C616-C629. PubMed ID: 27488660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nuclear Mechanotransduction in Skeletal Muscle.
    Jabre S; Hleihel W; Coirault C
    Cells; 2021 Feb; 10(2):. PubMed ID: 33557157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy.
    Adams GR; Bamman MM
    Compr Physiol; 2012 Oct; 2(4):2829-70. PubMed ID: 23720267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload.
    Goldspink G
    J Anat; 1999 Apr; 194 ( Pt 3)(Pt 3):323-34. PubMed ID: 10386770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Consecutive bouts of electrical stimulation-induced contractions alter ribosome biogenesis in rat skeletal muscle.
    Kotani T; Takegaki J; Takagi R; Nakazato K; Ishii N
    J Appl Physiol (1985); 2019 Jun; 126(6):1673-1680. PubMed ID: 30998122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid metabolism in skeletal muscle: generation of adaptive and maladaptive intracellular signals for cellular function.
    Watt MJ; Hoy AJ
    Am J Physiol Endocrinol Metab; 2012 Jun; 302(11):E1315-28. PubMed ID: 22185843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.