BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31295100)

  • 1. Identification of Multidimensional Regulatory Modules Through Multi-Graph Matching With Network Constraints.
    Chen J; Han G; Xu A; Cai H
    IEEE Trans Biomed Eng; 2020 Apr; 67(4):987-998. PubMed ID: 31295100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HOGMMNC: a higher order graph matching with multiple network constraints model for gene-drug regulatory modules identification.
    Chen J; Peng H; Han G; Cai H; Cai J
    Bioinformatics; 2019 Feb; 35(4):602-610. PubMed ID: 30052773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identify Multiple Gene-Drug Common Modules via Constrained Graph Matching.
    Chen J; Huang J; Liao Y; Zhu L; Cai H
    IEEE J Biomed Health Inform; 2022 Sep; 26(9):4794-4805. PubMed ID: 35788454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying miRNA-Gene Common and Specific Regulatory Modules for Cancer Subtyping by a High-Order Graph Matching Model.
    Chen J; Han G; Xu A; Akutsu T; Cai H
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):421-431. PubMed ID: 35320104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SOJNMF: Identifying Multidimensional Molecular Regulatory Modules by Sparse Orthogonality-Regularized Joint Non-Negative Matrix Factorization Algorithm.
    Wang Y; Guan T; Zhou G; Zhao H; Gao J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3695-3703. PubMed ID: 34546925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MultiSimNeNc: A network representation learning-based module identification method by network embedding and clustering.
    Wu H; Liang B; Chen Z; Zhang H
    Comput Biol Med; 2023 Apr; 156():106703. PubMed ID: 36889026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prior knowledge guided active modules identification: an integrated multi-objective approach.
    Chen W; Liu J; He S
    BMC Syst Biol; 2017 Mar; 11(Suppl 2):8. PubMed ID: 28361699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of microRNAs and Transcription Factors Co-Regulatory Modules by Integrating Multiple Types of Genomic Data.
    Luo J; Xiang G; Pan C
    IEEE Trans Nanobioscience; 2017 Jan; 16(1):51-59. PubMed ID: 28092569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying core gene modules in glioblastoma based on multilayer factor-mediated dysfunctional regulatory networks through integrating multi-dimensional genomic data.
    Ping Y; Deng Y; Wang L; Zhang H; Zhang Y; Xu C; Zhao H; Fan H; Yu F; Xiao Y; Li X
    Nucleic Acids Res; 2015 Feb; 43(4):1997-2007. PubMed ID: 25653168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-level attention graph neural network based on co-expression gene modules for disease diagnosis and prognosis.
    Xing X; Yang F; Li H; Zhang J; Zhao Y; Gao M; Huang J; Yao J
    Bioinformatics; 2022 Apr; 38(8):2178-2186. PubMed ID: 35157021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the autophagy gene expression profile of pancreatic cancer based on autophagy-related protein microtubule-associated protein 1A/1B-light chain 3.
    Yang YH; Zhang YX; Gui Y; Liu JB; Sun JJ; Fan H
    World J Gastroenterol; 2019 May; 25(17):2086-2098. PubMed ID: 31114135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of multi-omics data to mine cancer-related gene modules.
    Li P; Guo M; Sun B
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950038. PubMed ID: 32019413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis.
    Rajamani D; Bhasin MK
    Genome Med; 2016 May; 8(1):38. PubMed ID: 27137215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding Correlated Patterns via High-Order Matching for Multiple Sourced Biological Data.
    Yang X; Han G; Chen J; Cai H
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):1017-1025. PubMed ID: 30130172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Systemic Analysis of Transcriptomic and Epigenomic Data To Reveal Regulation Patterns for Complex Disease.
    Xu C; Zhang JG; Lin D; Zhang L; Shen H; Deng HW
    G3 (Bethesda); 2017 Jul; 7(7):2271-2279. PubMed ID: 28500050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of functional modules using network topology and high-throughput data.
    Ulitsky I; Shamir R
    BMC Syst Biol; 2007 Jan; 1():8. PubMed ID: 17408515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of key gene modules and pathways of human glioma through coexpression network.
    Shi T; Chen J; Li J; Yang BY; Zhang QL
    J Cell Physiol; 2019 Feb; 234(2):1862-1870. PubMed ID: 30067869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.