These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31295100)

  • 41. Identification of pathway-related modules in high-grade osteosarcoma based on topological centrality of network strategy.
    Ning B; Xu DL; Gao JH; Wang LL; Yan SY; Cheng S
    Eur Rev Med Pharmacol Sci; 2016 Jun; 20(11):2209-20. PubMed ID: 27338044
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of susceptibility modules for coronary artery disease using a genome wide integrated network analysis.
    Duan S; Luo X; Dong C
    Gene; 2013 Dec; 531(2):347-54. PubMed ID: 23994195
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integration of Tumor Genomic Data with Cell Lines Using Multi-dimensional Network Modules Improves Cancer Pharmacogenomics.
    Webber JT; Kaushik S; Bandyopadhyay S
    Cell Syst; 2018 Nov; 7(5):526-536.e6. PubMed ID: 30414925
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of single and module-based methods for modeling gene regulatory networks.
    Hernaez M; Blatti C; Gevaert O
    Bioinformatics; 2020 Jan; 36(2):558-567. PubMed ID: 31287491
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sparse overlapping group lasso for integrative multi-omics analysis.
    Park H; Niida A; Miyano S; Imoto S
    J Comput Biol; 2015 Feb; 22(2):73-84. PubMed ID: 25629319
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response.
    Ma S; Ding Z; Li P
    BMC Plant Biol; 2017 Aug; 17(1):131. PubMed ID: 28764653
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Weighted Gene Co-Expression Network Analysis Identifies Specific Modules and Hub Genes Related to Hyperlipidemia.
    Miao L; Yin RX; Pan SL; Yang S; Yang DZ; Lin WX
    Cell Physiol Biochem; 2018; 48(3):1151-1163. PubMed ID: 30045016
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioinformatics analysis of aggressive behavior of breast cancer via an integrated gene regulatory network.
    Yang X; Jia M; Li Z; Lu S; Qi X; Zhao B; Wang X; Rong Y; Shi J; Zhang Z; Xu W; Gao Y; Zhang S; Yu G
    J Cancer Res Ther; 2014; 10(4):1013-8. PubMed ID: 25579546
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identifying cancer prognostic modules by module network analysis.
    Zhou XH; Chu XY; Xue G; Xiong JH; Zhang HY
    BMC Bioinformatics; 2019 Feb; 20(1):85. PubMed ID: 30777030
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Graph-theoretical comparison of normal and tumor networks in identifying BRCA genes.
    Dopazo J; Erten C
    BMC Syst Biol; 2017 Nov; 11(1):110. PubMed ID: 29166896
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamic network inference and association computation discover gene modules regulating virulence, mycotoxin and sexual reproduction in Fusarium graminearum.
    Guo L; Ji M; Ye K
    BMC Genomics; 2020 Feb; 21(1):179. PubMed ID: 32093656
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of candidate target genes for human peripheral arterial disease using weighted gene co‑expression network analysis.
    Yin DX; Zhao HM; Sun DJ; Yao J; Ding DY
    Mol Med Rep; 2015 Dec; 12(6):8107-12. PubMed ID: 26498853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A graph-based algorithm for mining multi-level patterns in genomic data.
    Lam WW; Chan KC; Chiu DK; Wong AK
    J Bioinform Comput Biol; 2010 Oct; 8(5):789-807. PubMed ID: 20981888
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of weighted gene co-expression network analysis to reveal key modules and hub genes in generalized aggressive periodontitis.
    Li Y; Zheng JN; Wang EH; Lan KF; Gong CJ; Ding X
    Arch Oral Biol; 2020 Nov; 119():104895. PubMed ID: 32916454
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules.
    Silverbush D; Cristea S; Yanovich-Arad G; Geiger T; Beerenwinkel N; Sharan R
    Cell Syst; 2019 May; 8(5):456-466.e5. PubMed ID: 31103572
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A graph-based approach to systematically reconstruct human transcriptional regulatory modules.
    Yan X; Mehan MR; Huang Y; Waterman MS; Yu PS; Zhou XJ
    Bioinformatics; 2007 Jul; 23(13):i577-86. PubMed ID: 17646346
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data.
    Zhang S; Liu CC; Li W; Shen H; Laird PW; Zhou XJ
    Nucleic Acids Res; 2012 Oct; 40(19):9379-91. PubMed ID: 22879375
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic Module Detection in Temporal Attributed Networks of Cancers.
    Li D; Zhang S; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2219-2230. PubMed ID: 33780342
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics.
    Vandepoele K; Casneuf T; Van de Peer Y
    Genome Biol; 2006; 7(11):R103. PubMed ID: 17090307
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comprehensive multi-factor analysis and exploration for the pathogenesis of non-ischemic cardiomyopathy and ischemic cardiomyopathy.
    Li F; Cheng L; Ma L
    Cell Mol Biol (Noisy-le-grand); 2020 Jul; 66(5):66-72. PubMed ID: 33040816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.