These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Discovering human RNA aptamers by structure-based bioinformatics and genome-based in vitro selection. Ho B; Polanco J; Jimenez R; Lupták A Methods Enzymol; 2014; 549():29-46. PubMed ID: 25432743 [TBL] [Abstract][Full Text] [Related]
4. Constructive Prediction of Potential RNA Aptamers for a Protein Target. Lee W; Han K IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1476-1482. PubMed ID: 31689200 [TBL] [Abstract][Full Text] [Related]
5. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information. Ishida R; Adachi T; Yokota A; Yoshihara H; Aoki K; Nakamura Y; Hamada M Nucleic Acids Res; 2020 Aug; 48(14):e82. PubMed ID: 32537639 [TBL] [Abstract][Full Text] [Related]
6. Characterization of RNA aptamers against SRP19 protein having sequences different from SRP RNA. Haraguchi Y; Kuwasako K; Muto Y; Bessho Y; Nishimoto M; Yokoyama S; Kanai A; Kawai G; Sakamoto T Nucleic Acids Symp Ser (Oxf); 2009; (53):265-6. PubMed ID: 19749362 [TBL] [Abstract][Full Text] [Related]
7. In silico approaches to RNA aptamer design. Hamada M Biochimie; 2018 Feb; 145():8-14. PubMed ID: 29032056 [TBL] [Abstract][Full Text] [Related]
8. [New cell RNA elimination method for cell-based selex of modified RNA aptamers]. Davydova AS; Vorob'eva MA; Zen'kova MA; Sil'nikov VN; François JC; Ven'iaminova AG Mol Biol (Mosk); 2013; 47(6):1031-4. PubMed ID: 25509866 [No Abstract] [Full Text] [Related]
11. APTANI: a computational tool to select aptamers through sequence-structure motif analysis of HT-SELEX data. Caroli J; Taccioli C; De La Fuente A; Serafini P; Bicciato S Bioinformatics; 2016 Jan; 32(2):161-4. PubMed ID: 26395772 [TBL] [Abstract][Full Text] [Related]
12. The Toolbox for Modified Aptamers. Lapa SA; Chudinov AV; Timofeev EN Mol Biotechnol; 2016 Feb; 58(2):79-92. PubMed ID: 26607475 [TBL] [Abstract][Full Text] [Related]
13. Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection. Luo Z; Zhou H; Jiang H; Ou H; Li X; Zhang L Analyst; 2015 Apr; 140(8):2664-70. PubMed ID: 25728760 [TBL] [Abstract][Full Text] [Related]
14. Analyzing Secondary Structure Patterns in DNA Aptamers Identified via CompELS. Sullivan R; Adams MC; Naik RR; Milam VT Molecules; 2019 Apr; 24(8):. PubMed ID: 31010064 [TBL] [Abstract][Full Text] [Related]
15. What defines a synthetic riboswitch? - Conformational dynamics of ciprofloxacin aptamers with similar binding affinities but varying regulatory potentials. Kaiser C; Schneider J; Groher F; Suess B; Wachtveitl J Nucleic Acids Res; 2021 Apr; 49(7):3661-3671. PubMed ID: 33772594 [TBL] [Abstract][Full Text] [Related]
16. Methods for selection of aptamers to protein targets. Kulbachinskiy AV Biochemistry (Mosc); 2007 Dec; 72(13):1505-18. PubMed ID: 18282139 [TBL] [Abstract][Full Text] [Related]
17. Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface. Ohuchi SP; Ohtsu T; Nakamura Y Biochimie; 2006 Jul; 88(7):897-904. PubMed ID: 16540230 [TBL] [Abstract][Full Text] [Related]
18. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools. Dupont DM; Larsen N; Jensen JK; Andreasen PA; Kjems J Nucleic Acids Res; 2015 Dec; 43(21):e139. PubMed ID: 26163061 [TBL] [Abstract][Full Text] [Related]
19. Development of Cell-Specific Aptamers: Recent Advances and Insight into the Selection Procedures. Rahimizadeh K; AlShamaileh H; Fratini M; Chakravarthy M; Stephen M; Shigdar S; Veedu RN Molecules; 2017 Nov; 22(12):. PubMed ID: 29186905 [TBL] [Abstract][Full Text] [Related]
20. Selection of a DNA aptamer that binds 8-OHdG using GMP-agarose. Miyachi Y; Shimizu N; Ogino C; Fukuda H; Kondo A Bioorg Med Chem Lett; 2009 Jul; 19(13):3619-22. PubMed ID: 19450981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]