These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31295138)

  • 1. Convergence and Robustness Analysis of Novel Adaptive Multilayer Neural Dynamics-Based Controllers of Multirotor UAVs.
    Zheng L; Zhang Z
    IEEE Trans Cybern; 2021 Jul; 51(7):3710-3723. PubMed ID: 31295138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Robust Trajectory Tracking Control of Multiple Quad-Rotor UAVs with Parametric Uncertainties and Disturbances.
    Mehmood Y; Aslam J; Ullah N; Chowdhury MS; Techato K; Alzaed AN
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33807144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Modular Multirotor Unmanned Aerial Vehicle Design Approach for Development of an Engineering Education Platform.
    Kotarski D; Piljek P; Pranjić M; Grlj CG; Kasać J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bézier Curves-Based Optimal Trajectory Design for Multirotor UAVs with Any-Angle Pathfinding Algorithms.
    Satai HA; Zahra MMA; Rasool ZI; Abd-Ali RS; Pruncu CI
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33918212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive time-varying formation tracking control of unmanned aerial vehicles with quantized input.
    Wang Y; He L; Huang C
    ISA Trans; 2019 Feb; 85():76-83. PubMed ID: 30366714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-Time Model-Free Minimum-Seeking Autotuning Method for Unmanned Aerial Vehicle Controllers Based on Fibonacci-Search Algorithm.
    Giernacki W; Horla D; Báča T; Saska M
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30646579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desired tracking of delayed quadrotor UAV under model uncertainty and wind disturbance using adaptive super-twisting terminal sliding mode control.
    Mofid O; Mobayen S; Zhang C; Esakki B
    ISA Trans; 2022 Apr; 123():455-471. PubMed ID: 34130859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural network-based optimal adaptive output feedback control of a helicopter UAV.
    Nodland D; Zargarzadeh H; Jagannathan S
    IEEE Trans Neural Netw Learn Syst; 2013 Jul; 24(7):1061-73. PubMed ID: 24808521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Marker and MEMS IMU-Based Pose Estimation Method to Meet Multirotor UAV Landing Requirements.
    Wu Y; Niu X; Du J; Chang L; Tang H; Zhang H
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-time trajectory tracking control for a 12-rotor unmanned aerial vehicle with input saturation.
    Fu C; Tian Y; Huang H; Zhang L; Peng C
    ISA Trans; 2018 Oct; 81():52-62. PubMed ID: 30153895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust adaptive three-dimensional trajectory tracking control scheme design for small fixed-wing UAVs.
    Yang W; Shi Z; Zhong Y
    ISA Trans; 2023 Oct; 141():377-391. PubMed ID: 37453890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed adaptive fault-tolerant close formation flight control of multiple trailing fixed-wing UAVs.
    Yu Z; Zhang Y; Jiang B; Yu X; Fu J; Jin Y; Chai T
    ISA Trans; 2020 Nov; 106():181-199. PubMed ID: 32680604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fault-Tolerant Adaptive Learning Control for Quadrotor UAVs With the Time-Varying CoG and Full-State Constraints.
    Shen Z; Tan L; Yu S; Song Y
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5610-5622. PubMed ID: 33877988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information fusion estimation-based path following control of quadrotor UAVs subjected to Gaussian random disturbance.
    Xu Q; Wang Z; Zhen Z
    ISA Trans; 2020 Apr; 99():84-94. PubMed ID: 31629487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On decentralized adaptive full-order sliding mode control of multiple UAVs.
    Xiang X; Liu C; Su H; Zhang Q
    ISA Trans; 2017 Nov; 71(Pt 2):196-205. PubMed ID: 28941951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Tracking of Trajectories through Tracking Rate Regulation: Application to UAVs.
    Diaz-Del-Rio F; Sanchez-Cuevas P; Iñigo-Blasco P; Sevillano-Ramos JL
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On designing a configurable UAV autopilot for unmanned quadrotors.
    Bhar A; Sayadi M
    Front Neurorobot; 2024; 18():1363366. PubMed ID: 38873025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions.
    Fabra F; Zamora W; Sangüesa J; Calafate CT; Cano JC; Manzoni P
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31130706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data Driven Model-Free Adaptive Control Method for Quadrotor Formation Trajectory Tracking Based on RISE and ISMC Algorithm.
    Yuan D; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Potential Field Based Trajectory Tracking for Quadcopter UAV Moving Targets.
    Kownacki C
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.