BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 31295141)

  • 1. Error Correction Regression Framework for Enhancing the Decoding Accuracies of Ear-EEG Brain-Computer Interfaces.
    Kwak NS; Lee SW
    IEEE Trans Cybern; 2020 Aug; 50(8):3654-3667. PubMed ID: 31295141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing an online steady-state visual evoked potential-based brain-computer interface system using EarEEG.
    Wang YT; Nakanishi M; Kappel SL; Kidmose P; Mandic DP; Wang Y; Cheng CK; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2271-4. PubMed ID: 26736745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding.
    Ge S; Jiang Y; Wang P; Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the Performance of Non-Hair SSVEP-Based BCIs Featuring Template-Based Decoding Methods.
    Chan WH; Chiang KJ; Nakanishi M; Wang YT; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1972-1975. PubMed ID: 30440785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of ear electrodes for SSVEP-based BCI.
    Zhao H; Zheng L; Yuan M; Wang Y; Gao X; Liu R; Pei W
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37336205
    [No Abstract]   [Full Text] [Related]  

  • 10. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Dynamically Optimized SSVEP Brain-Computer Interface (BCI) Speller.
    Yin E; Zhou Z; Jiang J; Yu Y; Hu D
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1447-56. PubMed ID: 24801483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy.
    Lee MH; Kwon OY; Kim YJ; Kim HK; Lee YE; Williamson J; Fazli S; Lee SW
    Gigascience; 2019 May; 8(5):. PubMed ID: 30698704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses.
    Lee MH; Williamson J; Lee YE; Lee SW
    Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset.
    Lin YP; Wang Y; Jung TP
    J Neuroeng Rehabil; 2014 Aug; 11():119. PubMed ID: 25108604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian Multiple Kernel Learning Algorithm for SSVEP BCI Detection.
    Oikonomou VP; Nikolopoulos S; Kompatsiaris I
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):1990-2001. PubMed ID: 30369458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bimodal BCI using simultaneously NIRS and EEG.
    Tomita Y; Vialatte FB; Dreyfus G; Mitsukura Y; Bakardjian H; Cichocki A
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1274-84. PubMed ID: 24658251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel spatial filter for SSVEP-based BCI: A generated reference filter approach.
    Sözer AT; Fidan CB
    Comput Biol Med; 2018 May; 96():98-105. PubMed ID: 29554548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dry electroencephalogram electrode for applications in steady-state visual evoked potential-based brain-computer interface systems.
    Li P; Yin C; Li M; Li H; Yang B
    Biosens Bioelectron; 2021 Sep; 187():113326. PubMed ID: 34004544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.