These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31295482)

  • 1. Effects of different carbohydrate-binding modules on the enzymatic properties of pullulanase.
    Zeng Y; Xu J; Fu X; Tan M; Liu F; Zheng H; Song H
    Int J Biol Macromol; 2019 Sep; 137():973-981. PubMed ID: 31295482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and analysis of binding residues in the CBM68 of pullulanase PulA from Anoxybacillus sp. LM18-11.
    Zeng Y; Zheng H; Shen Y; Xu J; Tan M; Liu F; Song H
    J Biosci Bioeng; 2019 Jan; 127(1):8-15. PubMed ID: 30228040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-Terminal Domain Truncation and Domain Insertion-Based Engineering of a Novel Thermostable Type I Pullulanase from Geobacillus thermocatenulatus.
    Li L; Dong F; Lin L; He D; Wei W; Wei D
    J Agric Food Chem; 2018 Oct; 66(41):10788-10798. PubMed ID: 30222339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N-Terminal Domain of the Pullulanase from Anoxybacillus sp. WB42 Modulates Enzyme Specificity and Thermostability.
    Wang J; Liu Z; Zhou Z
    Chembiochem; 2018 May; 19(9):949-955. PubMed ID: 29493906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Gene expression and characterisation of three pullulanases from Bacillus cereus GXBC-3].
    Li M; Wang X; Huang Y; Huang J; Liang J; Huang R; Du L; Wei Y
    Sheng Wu Gong Cheng Xue Bao; 2012 Apr; 28(4):466-75. PubMed ID: 22803396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of N-terminal truncation of Bacillus acidopullulyticus pullulanase on enzyme properties and functions].
    Chen A; Liu X; Dai X; Zhan J; Peng F; Li L; Wang F; Li S; Yang Y; Bai Z
    Sheng Wu Gong Cheng Xue Bao; 2016 Mar; 32(3):355-64. PubMed ID: 27349118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The starch-binding domain family CBM41-An in silico analysis of evolutionary relationships.
    Janeček Š; Majzlová K; Svensson B; MacGregor EA
    Proteins; 2017 Aug; 85(8):1480-1492. PubMed ID: 28425599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Roles of N-Terminal Domains in Pullulanase from Human Gut
    Wang Y; Svensson B; Henrissat B; Møller MS
    J Agric Food Chem; 2023 Dec; 71(48):18898-18908. PubMed ID: 38053504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Pullulanase Catalysis via Reversible Immobilization on Modified Fe
    Wang J; Liu Z; Zhou Z
    Appl Biochem Biotechnol; 2017 Aug; 182(4):1467-1477. PubMed ID: 28185055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and structural studies of pullulanase from Anoxybacillus sp. LM18-11.
    Xu J; Ren F; Huang CH; Zheng Y; Zhen J; Sun H; Ko TP; He M; Chen CC; Chan HC; Guo RT; Song H; Ma Y
    Proteins; 2014 Sep; 82(9):1685-93. PubMed ID: 24375572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the secretion efficiency and thermostability of a Bacillus deramificans pullulanase mutant (D437H/D503Y) by N-terminal domain truncation.
    Duan X; Wu J
    Appl Environ Microbiol; 2015 Mar; 81(6):1926-31. PubMed ID: 25556190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the catalytic behavior of pullulanases chelated onto nickel (II)-modified magnetic nanoparticles.
    Wang J; Liu Z; Zhou Z
    Enzyme Microb Technol; 2017 Jun; 101():9-16. PubMed ID: 28433193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a type I pullulanase from Anoxybacillus sp. SK3-4 reveals an unusual substrate hydrolysis.
    Kahar UM; Ng CL; Chan KG; Goh KM
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6291-6307. PubMed ID: 27000839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of lipid modification on a starch-debranching enzyme, Klebsiella pullulanase: comparison of properties of lipid-modified and unmodified pullulanases.
    Yamashita M; Nakagawa A; Katsuragi N; Murooka Y
    Mol Microbiol; 1992 Feb; 6(3):389-94. PubMed ID: 1552852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hyperthermostable Type II Pullulanase from a Deep-Sea Microorganism
    Pang B; Zhou L; Cui W; Liu Z; Zhou S; Xu J; Zhou Z
    J Agric Food Chem; 2019 Aug; 67(34):9611-9617. PubMed ID: 31385500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases.
    Nisha M; Satyanarayana T
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5661-79. PubMed ID: 27142298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel N- and C-Terminal Truncations Facilitate Purification and Analysis of a 155-kDa Cold-Adapted Type-I Pullulanase.
    Elleuche S; Krull A; Lorenz U; Antranikian G
    Protein J; 2017 Feb; 36(1):56-63. PubMed ID: 28176135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Thermostability of Acidic Pullulanase from Bacillus naganoensis by Rational Design.
    Chang M; Chu X; Lv J; Li Q; Tian J; Wu N
    PLoS One; 2016; 11(10):e0165006. PubMed ID: 27764201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of tryptophan437 at subsite +2 in pullulanase from Bacillus subtilis str. 168.
    Li X; Bai Y; Ji H; Wang J; Cui Y; Jin Z
    Int J Biol Macromol; 2019 Jul; 133():920-928. PubMed ID: 31028806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of the Thermostability and Activity of Pullulanase from Anoxybacillus sp. WB42.
    Pang B; Zhou L; Cui W; Liu Z; Zhou Z
    Appl Biochem Biotechnol; 2020 Jul; 191(3):942-954. PubMed ID: 31939086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.