These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 31295543)
41. Promoting the Delivery of Nanoparticles to Atherosclerotic Plaques by DNA Coating. Zhang L; Tian XY; Chan CKW; Bai Q; Cheng CK; Chen FM; Cheung MSH; Yin B; Yang H; Yung WY; Chen Z; Ding F; Leung KC; Zhang C; Huang Y; Lau JYW; Choi CHJ ACS Appl Mater Interfaces; 2019 Apr; 11(15):13888-13904. PubMed ID: 30516979 [TBL] [Abstract][Full Text] [Related]
42. Nonlinear dynamics of early atherosclerotic plaque formation may determine the efficacy of high density lipoproteins (HDL) in plaque regression. Chalmers AD; Bursill CA; Myerscough MR PLoS One; 2017; 12(11):e0187674. PubMed ID: 29161303 [TBL] [Abstract][Full Text] [Related]
43. Deletion of the angiotensin II type 1a receptor prevents atherosclerotic plaque rupture in apolipoprotein E-/- mice. Aono J; Suzuki J; Iwai M; Horiuchi M; Nagai T; Nishimura K; Inoue K; Ogimoto A; Okayama H; Higaki J Arterioscler Thromb Vasc Biol; 2012 Jun; 32(6):1453-9. PubMed ID: 22460554 [TBL] [Abstract][Full Text] [Related]
44. Caveolin-1 negatively regulates SR-BI mediated selective uptake of high-density lipoprotein-derived cholesteryl ester. Matveev S; Uittenbogaard A; van Der Westhuyzen D; Smart EJ Eur J Biochem; 2001 Nov; 268(21):5609-16. PubMed ID: 11683884 [TBL] [Abstract][Full Text] [Related]
45. Tanshinone IIA-loaded reconstituted high density lipoproteins: Atherosclerotic plaque targeting mechanism in a foam cell model and pharmacokinetics in rabbits. Zhang W; Li J; Liu J; Wu Z; Xu Y; Wang J Pharmazie; 2012 Apr; 67(4):324-30. PubMed ID: 22570939 [TBL] [Abstract][Full Text] [Related]
46. Varenicline enhances oxidized LDL uptake by increasing expression of LOX-1 and CD36 scavenger receptors through α Kanaoka Y; Koga M; Sugiyama K; Ohishi K; Kataoka Y; Yamauchi A Toxicology; 2017 Apr; 380():62-71. PubMed ID: 28202387 [TBL] [Abstract][Full Text] [Related]
47. Pioglitazone-Incorporated Nanoparticles Prevent Plaque Destabilization and Rupture by Regulating Monocyte/Macrophage Differentiation in ApoE-/- Mice. Nakashiro S; Matoba T; Umezu R; Koga J; Tokutome M; Katsuki S; Nakano K; Sunagawa K; Egashira K Arterioscler Thromb Vasc Biol; 2016 Mar; 36(3):491-500. PubMed ID: 26821947 [TBL] [Abstract][Full Text] [Related]
48. A novel small molecule liver X receptor transcriptional regulator, nagilactone B, suppresses atherosclerosis in apoE-deficient mice. Gui Y; Yao S; Yan H; Hu L; Yu C; Gao F; Xi C; Li H; Ye Y; Wang Y Cardiovasc Res; 2016 Oct; 112(1):502-14. PubMed ID: 27460841 [TBL] [Abstract][Full Text] [Related]
49. Natural Particulates Inspired Specific-Targeted Codelivery of siRNA and Paclitaxel for Collaborative Antitumor Therapy. Wang R; Zhao Z; Han Y; Hu S; Opoku-Damoah Y; Zhou J; Yin L; Ding Y Mol Pharm; 2017 Sep; 14(9):2999-3012. PubMed ID: 28753317 [TBL] [Abstract][Full Text] [Related]
50. MiR-181b Antagonizes Atherosclerotic Plaque Vulnerability Through Modulating Macrophage Polarization by Directly Targeting Notch1. An TH; He QW; Xia YP; Chen SC; Baral S; Mao L; Jin HJ; Li YN; Wang MD; Chen JG; Zhu LQ; Hu B Mol Neurobiol; 2017 Oct; 54(8):6329-6341. PubMed ID: 27722924 [TBL] [Abstract][Full Text] [Related]
51. Retinoic acid induces macrophage cholesterol efflux and inhibits atherosclerotic plaque formation in apoE-deficient mice. Zhou W; Lin J; Chen H; Wang J; Liu Y; Xia M Br J Nutr; 2015 Aug; 114(4):509-18. PubMed ID: 26201974 [TBL] [Abstract][Full Text] [Related]
52. Varenicline aggravates atherosclerotic plaque formation in nicotine-pretreated ApoE knockout mice due to enhanced oxLDL uptake by macrophages through downregulation of ABCA1 and ABCG1 expression. Koga M; Kanaoka Y; Okamoto M; Nakao Y; Inada K; Takayama S; Kataoka Y; Yamauchi A J Pharmacol Sci; 2020 Jan; 142(1):9-15. PubMed ID: 31771811 [TBL] [Abstract][Full Text] [Related]
53. Targeting Coagulation Factor Xa Promotes Regression of Advanced Atherosclerosis in Apolipoprotein-E Deficient Mice. Posthuma JJ; Posma JJN; van Oerle R; Leenders P; van Gorp RH; Jaminon AMG; Mackman N; Heitmeier S; Schurgers LJ; Ten Cate H; Spronk HMH Sci Rep; 2019 Mar; 9(1):3909. PubMed ID: 30846818 [TBL] [Abstract][Full Text] [Related]
54. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Luo Y; Duan H; Qian Y; Feng L; Wu Z; Wang F; Feng J; Yang D; Qin Z; Yan X Cell Res; 2017 Mar; 27(3):352-372. PubMed ID: 28084332 [TBL] [Abstract][Full Text] [Related]
55. GM1-Modified Lipoprotein-like Nanoparticle: Multifunctional Nanoplatform for the Combination Therapy of Alzheimer's Disease. Huang M; Hu M; Song Q; Song H; Huang J; Gu X; Wang X; Chen J; Kang T; Feng X; Jiang D; Zheng G; Chen H; Gao X ACS Nano; 2015 Nov; 9(11):10801-16. PubMed ID: 26440073 [TBL] [Abstract][Full Text] [Related]
56. A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Ding Y; Wang W; Feng M; Wang Y; Zhou J; Ding X; Zhou X; Liu C; Wang R; Zhang Q Biomaterials; 2012 Dec; 33(34):8893-905. PubMed ID: 22979990 [TBL] [Abstract][Full Text] [Related]
57. PM2.5 promotes plaque vulnerability at different stages of atherosclerosis and the formation of foam cells via TLR4/MyD88/NFκB pathway. Geng J; Liu H; Ge P; Hu T; Zhang Y; Zhang X; Xu B; Wang B; Xie J Ecotoxicol Environ Saf; 2019 Jul; 176():76-84. PubMed ID: 30921699 [TBL] [Abstract][Full Text] [Related]
58. Tetramethylpyrazine suppresses lipid accumulation in macrophages via upregulation of the ATP-binding cassette transporters and downregulation of scavenger receptors. Duan J; Xiang D; Luo H; Wang G; Ye Y; Yu C; Li X Oncol Rep; 2017 Oct; 38(4):2267-2276. PubMed ID: 28791414 [TBL] [Abstract][Full Text] [Related]
59. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE Song Y; Huang Z; Liu X; Pang Z; Chen J; Yang H; Zhang N; Cao Z; Liu M; Cao J; Li C; Yang X; Gong H; Qian J; Ge J Nanomedicine; 2019 Jan; 15(1):13-24. PubMed ID: 30171903 [TBL] [Abstract][Full Text] [Related]
60. Apolipoprotein E-/- Mice Lacking Hemopexin Develop Increased Atherosclerosis via Mechanisms That Include Oxidative Stress and Altered Macrophage Function. Mehta NU; Grijalva V; Hama S; Wagner A; Navab M; Fogelman AM; Reddy ST Arterioscler Thromb Vasc Biol; 2016 Jun; 36(6):1152-63. PubMed ID: 27079878 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]