These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31295836)

  • 1. Pore Structure Damages in Cement-Based Materials by Mercury Intrusion: A Non-Destructive Assessment by X-Ray Computed Tomography.
    Wang X; Peng Y; Wang J; Zeng Q
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31295836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption.
    Kaufmann J; Loser R; Leemann A
    J Colloid Interface Sci; 2009 Aug; 336(2):730-7. PubMed ID: 19505695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between the Size of the Samples and the Interpretation of the Mercury Intrusion Results of an Artificial Sandstone.
    Dong H; Zhang H; Zuo Y; Gao P; Ye G
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29382067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fractal characteristics of pore size distribution in cement-based materials and its effect on gas permeability.
    Zhu J; Zhang R; Zhang Y; He F
    Sci Rep; 2019 Nov; 9(1):17191. PubMed ID: 31748617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ink-bottle effect in mercury intrusion porosimetry of cement-based materials.
    Moro F; Böhni H
    J Colloid Interface Sci; 2002 Feb; 246(1):135-49. PubMed ID: 16290394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On Phase Identification of Hardened Cement Pastes by Combined Nanoindentation and Mercury Intrusion Method.
    Ying J; Zhang X; Jiang Z; Huang Y
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ink-bottle Effect and Pore Size Distribution of Cementitious Materials Identified by Pressurization⁻Depressurization Cycling Mercury Intrusion Porosimetry.
    Zhang Y; Yang B; Yang Z; Ye G
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31060298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porosity of a Fast-Setting Mortar with Crystallization Admixture and Effect of a SA-PA Modification.
    Cotini O; Di Maggio R; Tonelli D; Nascimben R; Ataollahi N
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the Pore Structure Characteristics of Ferronickel-Slag-Mixed Ternary-Blended Cement.
    Cho WJ; Kim MJ; Kim JS
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials.
    Abell AB; Willis KL; Lange DA
    J Colloid Interface Sci; 1999 Mar; 211(1):39-44. PubMed ID: 9929433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pore Structure as a Response to the Freeze/Thaw Resistance of Mortars.
    Netinger Grubeša I; Marković B; Vračević M; Tunkiewicz M; Szenti I; Kukovecz Á
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution Map of Frost Resistance for Cement-Based Materials Based on Pore Structure Change.
    Xuan Quy N; Noguchi T; Na S; Kim J; Hama Y
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32486410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional pore characterization of intact loess and compacted loess with micron scale computed tomography and mercury intrusion porosimetry.
    Zhang L; Qi S; Ma L; Guo S; Li Z; Li G; Yang J; Zou Y; Li T; Hou X
    Sci Rep; 2020 May; 10(1):8511. PubMed ID: 32444623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore Structure Characterization of Sodium Hydroxide Activated Slag Using Mercury Intrusion Porosimetry, Nitrogen Adsorption, and Image Analysis.
    Zuo Y; Ye G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29921780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study and analytical model for the pore structure of epoxy latex-modified mortar.
    Li P; Lu W; An X; Zhou L; Han X; Du S; Wang C
    Sci Rep; 2022 Apr; 12(1):5822. PubMed ID: 35388135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the Pore and Microstructure Fractal Characteristics of Alkali-Activated Coal Gangue-Slag Mortars.
    Ma H; Sun J; Wu C; Yi C; Li Y
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32471072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porosity and Pore Size Distribution of Native and Delignified Beech Wood Determined by Mercury Intrusion Porosimetry.
    Vitas S; Segmehl JS; Burgert I; Cabane E
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30700052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mechanism of Anticorrosion Performance and Mechanical Property Differences between Seawater Sea-Sand and Freshwater River-Sand Ultra-High-Performance Polymer Cement Mortar (UHPC).
    Li T; Sun X; Shi F; Zhu Z; Wang D; Tian H; Liu X; Lian X; Bao T; Hou B
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Pore Structure of Lightweight Mortar with Nano-Additives.
    Du Y; Pundienė I; Pranckevičienė J; Zujevs A; Korjakins A
    Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore size distributions and pore multifractal characteristics of medium and low-rank coals.
    Sun B; Yang Q; Zhu J; Shao T; Yang Y; Hou C; Li G
    Sci Rep; 2020 Dec; 10(1):22353. PubMed ID: 33339868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.