These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31295890)

  • 1. A Low-Cost Continuous Turbidity Monitor.
    Gillett D; Marchiori A
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31295890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Frugal, In Situ Sensor Implementing a Ratiometric Method for Continuous Monitoring of Turbidity in Natural Waters.
    Sanchez R; Groc M; Vuillemin R; Pujo-Pay M; Raimbault V
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Cost GRIN-Lens-Based Nephelometric Turbidity Sensing in the Range of 0.1-1000 NTU.
    Metzger M; Konrad A; Blendinger F; Modler A; Meixner AJ; Bucher V; Brecht M
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Innovative Online Modularized Device for Turbidity Monitoring.
    Chu CH; Lin YX; Liu CK; Lai MC
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Cost-Effective Optical Sensor for Continuous Monitoring of Turbidity and Suspended Particulate Matter in Marine Environment.
    Matos T; Faria CL; Martins MS; Henriques R; Gomes PA; Goncalves LM
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Compact, Low-Cost, and Low-Power Turbidity Sensor for Continuous In Situ Stormwater Monitoring.
    Wang M; Shi B; Catsamas S; Kolotelo P; McCarthy D
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessments at multiple levels of biological organization allow for an integrative determination of physiological tolerances to turbidity in an endangered fish species.
    Hasenbein M; Fangue NA; Geist J; Komoroske LM; Truong J; McPherson R; Connon RE
    Conserv Physiol; 2016; 4(1):cow004. PubMed ID: 27293756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory.
    Rügner H; Schwientek M; Egner M; Grathwohl P
    Sci Total Environ; 2014 Aug; 490():191-8. PubMed ID: 24858216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ tryptophan-like fluorometers: assessing turbidity and temperature effects for freshwater applications.
    Khamis K; Sorensen JP; Bradley C; Hannah DM; Lapworth DJ; Stevens R
    Environ Sci Process Impacts; 2015 Apr; 17(4):740-52. PubMed ID: 25756677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smartphone-based turbidity reader.
    Ceylan Koydemir H; Rajpal S; Gumustekin E; Karinca D; Liang K; Göröcs Z; Tseng D; Ozcan A
    Sci Rep; 2019 Dec; 9(1):19901. PubMed ID: 31882742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperspectral sensing for turbid water quality monitoring in freshwater rivers: Empirical relationship between reflectance and turbidity and total solids.
    Wu JL; Ho CR; Huang CC; Srivastav AL; Tzeng JH; Lin YT
    Sensors (Basel); 2014 Nov; 14(12):22670-88. PubMed ID: 25460816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a Multipoint Cost-Effective Optical Instrument for Continuous In-Situ Monitoring of Turbidity and Sediment.
    Matos T; Faria CL; Martins MS; Henriques R; Gomes PA; Goncalves LM
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments.
    Nnane DE; Ebdon JE; Taylor HD
    Water Res; 2011 Mar; 45(6):2235-46. PubMed ID: 21324505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Cost Turbidity Sensor to Determine Eutrophication in Water Bodies.
    Rocher J; Jimenez JM; Tomas J; Lloret J
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the relationship between ceramic pot filter water production and turbidity in source water.
    Salvinelli C; Elmore AC; Reidmeyer MR; Drake KD; Ahmad KI
    Water Res; 2016 Nov; 104():28-33. PubMed ID: 27508971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized weighted ratio method for accurate turbidity measurement over a wide range.
    Liu H; Yang P; Song H; Guo Y; Zhan S; Huang H; Wang H; Tao B; Mu Q; Xu J; Li D; Chen Y
    Opt Express; 2015 Dec; 23(25):32703-17. PubMed ID: 26699060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Glass-Fiber-Optic Turbidity Sensor for Real-Time In Situ Water Quality Monitoring.
    Vu CT; Zahrani AA; Duan L; Wu T
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the Development of an Affordable and Practical Light Attenuation Turbidity Sensor for Remote Near Real-Time Aquatic Monitoring.
    Trevathan J; Read W; Schmidtke S
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32252446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring runoff-suspended solids using an improved turbidometer method.
    Ginting D; Mamo M
    J Environ Qual; 2006; 35(3):815-23. PubMed ID: 16585624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of turbidity of water using locally available natural coagulants.
    Asrafuzzaman M; Fakhruddin AN; Hossain MA
    ISRN Microbiol; 2011; 2011():632189. PubMed ID: 23724307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.