These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31295893)

  • 1. Reflectance-Based Organic Pulse Meter Sensor for Wireless Monitoring of Photoplethysmogram Signal.
    Elsamnah F; Bilgaiyan A; Affiq M; Shim CH; Ishidai H; Hattori R
    Biosensors (Basel); 2019 Jul; 9(3):. PubMed ID: 31295893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Design Study for Power Reduction in Organic Optoelectronic Pulse Meter Sensor.
    Elsamnah F; Bilgaiyan A; Affiq M; Shim CH; Ishidai H; Hattori R
    Biosensors (Basel); 2019 Mar; 9(2):. PubMed ID: 30934921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis.
    Reyes I; Nazeran H; Franco M; Haltiwanger E
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2092-5. PubMed ID: 23366333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and prototyping of a wristband-type wireless photoplethysmographic device for heart rate variability signal analysis.
    Ghamari M; Soltanpur C; Cabrera S; Romero R; Martinek R; Nazeran H
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4967-4970. PubMed ID: 28269383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Noise Photoplethysmography Sensor Using Correlated Double Sampling for Heartbeat Interval Acquisition.
    Watanabe K; Izumi S; Sasai K; Yano Y; Kawaguchi H; Yoshimoto M
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1552-1562. PubMed ID: 31796415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Onboard tagging for real-time quality assessment of photoplethysmograms acquired by a wireless reflectance pulse oximeter.
    Li K; Warren S; Natarajan B
    IEEE Trans Biomed Circuits Syst; 2012 Feb; 6(1):54-63. PubMed ID: 23852745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress in Flexible and Wearable All Organic Photoplethysmography Sensors for SpO
    Dcosta JV; Ochoa D; Sanaur S
    Adv Sci (Weinh); 2023 Nov; 10(31):e2302752. PubMed ID: 37740697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Low-Power Photoplethysmogram-Based Heart Rate Sensor Using Heartbeat Locked Loop.
    Lee J; Jang DH; Park S; Cho S
    IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1220-1229. PubMed ID: 30334807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Wristwatch-Based Wireless Sensor Platform for IoT Health Monitoring Applications.
    Kumar S; Buckley JL; Barton J; Pigeon M; Newberry R; Rodencal M; Hajzeraj A; Hannon T; Rogers K; Casey D; O'Sullivan D; O'Flynn B
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32192204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid Prototyping of a Smart Device-based Wireless Reflectance Photoplethysmograph.
    Ghamari M; Aguilar C; Soltanpur C; Nazeran H
    Proc South Biomed Eng Conf; 2016 Mar; 2016():175-176. PubMed ID: 28959119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smart photoplethysmographic sensor for pulse wave registration at different vascular depths.
    Leier M; Pilt K; Karai D; Jervan G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1849-52. PubMed ID: 26736641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Organic/Inorganic Hybrid Near-Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring.
    Xu H; Liu J; Zhang J; Zhou G; Luo N; Zhao N
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28612929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A clip-free eyeglasses-based wearable monitoring device for measuring photoplethysmograhic signals.
    Zheng Y; Leung B; Sy S; Zhang Y; Poon CC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5022-5. PubMed ID: 23367056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Portable, Wireless Photoplethysomography Sensor for Assessing Health of Arteriovenous Fistula Using Class-Weighted Support Vector Machine.
    Chao PC; Chiang PY; Kao YH; Tu TY; Yang CY; Tarng DC; Wey CL
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar powered wrist worn acquisition system for continuous photoplethysmogram monitoring.
    Dieffenderfer JP; Beppler E; Novak T; Whitmire E; Jayakumar R; Randall C; Qu W; Rajagopalan R; Bozkurt A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3142-5. PubMed ID: 25570657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring and detecting atrial fibrillation using wearable technology.
    Nemati S; Ghassemi MM; Ambai V; Isakadze N; Levantsevych O; Shah A; Clifford GD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3394-3397. PubMed ID: 28269032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Low-Power, Dual-Wavelength Photoplethysmogram (PPG) SoC With Static and Time-Varying Interferer Removal.
    Winokur ES; O'Dwyer T; Sodini CG
    IEEE Trans Biomed Circuits Syst; 2015 Aug; 9(4):581-9. PubMed ID: 25373112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Dual-Channel PPG Readout System With Motion-Tolerant Adaptability for OLED-OPD Sensors.
    Pandey RK; Chao PC
    IEEE Trans Biomed Circuits Syst; 2022 Feb; 16(1):36-51. PubMed ID: 34962876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 280 μW, 108 dB DR PPG-Readout IC With Reconfigurable, 2nd-Order, Incremental ΔΣM Front-End for Direct Light-to-Digital Conversion.
    Marefat F; Erfani R; Kilgore KL; Mohseni P
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1183-1194. PubMed ID: 33186120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.