BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31295931)

  • 1. Differences in the Emission of Volatile Organic Compounds (VOCs) between Non-Differentiating and Adipogenically Differentiating Mesenchymal Stromal/Stem Cells from Human Adipose Tissue.
    Klemenz AC; Meyer J; Ekat K; Bartels J; Traxler S; Schubert JK; Kamp G; Miekisch W; Peters K
    Cells; 2019 Jul; 8(7):. PubMed ID: 31295931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smell of cells: Volatile profiling of stem- and non-stem cell proliferation.
    Bischoff AC; Oertel P; Sukul P; Rimmbach C; David R; Schubert J; Miekisch W
    J Breath Res; 2018 Mar; 12(2):026014. PubMed ID: 29231842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic collection and analysis of volatile organic compounds from the headspace of cell cultures.
    Baranska A; Smolinska A; Boots AW; Dallinga JW; van Schooten FJ
    J Breath Res; 2015 Oct; 9(4):047102. PubMed ID: 26469548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of volatile organic compounds for the classification and identification of mycobacterial species.
    Küntzel A; Oertel P; Fischer S; Bergmann A; Trefz P; Schubert J; Miekisch W; Reinhold P; Köhler H
    PLoS One; 2018; 13(3):e0194348. PubMed ID: 29558492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile set-up for non-invasive in vitro analysis of headspace VOCs.
    Traxler S; Bischoff AC; Trefz P; Schubert JK; Miekisch W
    J Breath Res; 2018 Jul; 12(4):041001. PubMed ID: 29900878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the volatile organic compounds present in the headspace of decomposing animal remains, and compared with human remains.
    Cablk ME; Szelagowski EE; Sagebiel JC
    Forensic Sci Int; 2012 Jul; 220(1-3):118-25. PubMed ID: 22424672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry.
    Boots AW; Smolinska A; van Berkel JJ; Fijten RR; Stobberingh EE; Boumans ML; Moonen EJ; Wouters EF; Dallinga JW; Van Schooten FJ
    J Breath Res; 2014 Jun; 8(2):027106. PubMed ID: 24737039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of volatile organic compounds emission profiles from hot road bitumens.
    Boczkaj G; Przyjazny A; Kamiński M
    Chemosphere; 2014 Jul; 107():23-30. PubMed ID: 24875867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatile scents of influenza A and S. pyogenes (co-)infected cells.
    Traxler S; Barkowsky G; Saß R; Klemenz AC; Patenge N; Kreikemeyer B; Schubert JK; Miekisch W
    Sci Rep; 2019 Dec; 9(1):18894. PubMed ID: 31827195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of needle trap micro-extraction and solid-phase micro-extraction: Obtaining comprehensive information on volatile emissions from in vitro cultures.
    Oertel P; Bergmann A; Fischer S; Trefz P; Küntzel A; Reinhold P; Köhler H; Schubert JK; Miekisch W
    Biomed Chromatogr; 2018 Oct; 32(10):e4285. PubMed ID: 29761519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of Three Panax Species Based on Differences in Volatile Organic Compounds Using a Static Headspace GC-MS-Based Metabolomics Approach.
    Chen XJ; Qiu JF; Wang YT; Wan JB
    Am J Chin Med; 2016; 44(3):663-76. PubMed ID: 27109159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Headspace sorptive extraction-gas chromatography-mass spectrometry method to measure volatile emissions from human airway cell cultures.
    Yamaguchi MS; McCartney MM; Linderholm AL; Ebeler SE; Schivo M; Davis CE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jul; 1090():36-42. PubMed ID: 29783172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of volatile organic compounds in pen inks by a dynamic headspace needle trap device combined with gas chromatography-mass spectrometry.
    Zang X; Liang W; Chang Q; Wu T; Wang C; Wang Z
    J Chromatogr A; 2017 Sep; 1513():27-34. PubMed ID: 28734603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy metabolic capacities of human adipose-derived mesenchymal stromal cells in vitro and their adaptations in osteogenic and adipogenic differentiation.
    Meyer J; Salamon A; Mispagel S; Kamp G; Peters K
    Exp Cell Res; 2018 Sep; 370(2):632-642. PubMed ID: 30036541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of Swiss cheese from 5 different factories by high impact volatile organic compound profiles determined by odor activity value using selected ion flow tube mass spectrometry and odor threshold.
    Taylor K; Wick C; Castada H; Kent K; Harper WJ
    J Food Sci; 2013 Oct; 78(10):C1509-C1515. PubMed ID: 24106758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous determination of aromatic and chlorinated compounds in urine of exposed workers by dynamic headspace and gas chromatography coupled to mass spectrometry (dHS-GC-MS).
    Erb A; Marsan P; Burgart M; Remy A; Lambert-Xolin AM; Jeandel F; Hanser O; Robert A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Sep; 1125():121724. PubMed ID: 31352201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent Extraction of PDMS Tubing as a New Method for the Capture of Volatile Organic Compounds from Headspace.
    Thomas G; Caulfield J; Nikolaeva-Reynolds L; Birkett MA; Vuts J
    J Chem Ecol; 2024 Apr; 50(3-4):85-99. PubMed ID: 38246946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS.
    Tait E; Perry JD; Stanforth SP; Dean JR
    J Chromatogr Sci; 2014 Apr; 52(4):363-73. PubMed ID: 23661670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry.
    Gerritsen MG; Brinkman P; Escobar N; Bos LD; de Heer K; Meijer M; Janssen HG; de Cock H; Wösten HAB; Visser CE; van Oers MHJ; Sterk PJ
    Med Mycol; 2018 Feb; 56(2):253-256. PubMed ID: 28525576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Needle Trap Device as a New Sampling and Preconcentration Approach for Volatile Organic Compounds of Herbal Medicines and its Application to the Analysis of Volatile Components in Viola tianschanica.
    Qin Y; Pang Y; Cheng Z
    Phytochem Anal; 2016 Nov; 27(6):364-374. PubMed ID: 27687791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.