These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31296000)

  • 41. C-terminal turn stability determines assembly differences between Aβ40 and Aβ42.
    Roychaudhuri R; Yang M; Deshpande A; Cole GM; Frautschy S; Lomakin A; Benedek GB; Teplow DB
    J Mol Biol; 2013 Jan; 425(2):292-308. PubMed ID: 23154165
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biophysical characterization of Abeta42 C-terminal fragments: inhibitors of Abeta42 neurotoxicity.
    Li H; Monien BH; Fradinger EA; Urbanc B; Bitan G
    Biochemistry; 2010 Feb; 49(6):1259-67. PubMed ID: 20050679
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new structural model of Alzheimer's Aβ42 fibrils based on electron paramagnetic resonance data and Rosetta modeling.
    Gu L; Tran J; Jiang L; Guo Z
    J Struct Biol; 2016 Apr; 194(1):61-7. PubMed ID: 26827680
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Morphology of a Transmembrane Aβ
    Ngo ST; Nguyen TH; Vu VV
    J Chem Inf Model; 2023 Jul; 63(14):4376-4382. PubMed ID: 37409844
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular Dynamics Simulations of Amyloid β-Peptide (1-42): Tetramer Formation and Membrane Interactions.
    Brown AM; Bevan DR
    Biophys J; 2016 Sep; 111(5):937-49. PubMed ID: 27602722
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structures of Aβ17-42 trimers in isolation and with five small-molecule drugs using a hierarchical computational procedure.
    Chebaro Y; Jiang P; Zang T; Mu Y; Nguyen PH; Mousseau N; Derreumaux P
    J Phys Chem B; 2012 Jul; 116(29):8412-22. PubMed ID: 22283547
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The conformational stability of nonfibrillar amyloid-β peptide oligomers critically depends on the C-terminal peptide length.
    Socher E; Sticht H; Horn AH
    ACS Chem Neurosci; 2014 Mar; 5(3):161-7. PubMed ID: 24494584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterizing amyloid-beta protein misfolding from molecular dynamics simulations with explicit water.
    Lee C; Ham S
    J Comput Chem; 2011 Jan; 32(2):349-55. PubMed ID: 20734314
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Amyloid beta-protein monomer folding: free-energy surfaces reveal alloform-specific differences.
    Yang M; Teplow DB
    J Mol Biol; 2008 Dec; 384(2):450-64. PubMed ID: 18835397
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aβ40 and Aβ42 amyloid fibrils exhibit distinct molecular recycling properties.
    Sánchez L; Madurga S; Pukala T; Vilaseca M; López-Iglesias C; Robinson CV; Giralt E; Carulla N
    J Am Chem Soc; 2011 May; 133(17):6505-8. PubMed ID: 21486030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spontaneous in vitro formation of supramolecular beta-amyloid structures, "betaamy balls", by beta-amyloid 1-40 peptide.
    Westlind-Danielsson A; Arnerup G
    Biochemistry; 2001 Dec; 40(49):14736-43. PubMed ID: 11732892
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure of ring-shaped Aβ₄₂ oligomers determined by conformational selection.
    Tran L; Basdevant N; Prévost C; Ha-Duong T
    Sci Rep; 2016 Feb; 6():21429. PubMed ID: 26868929
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid-β
    Shuaib S; Goyal B
    J Biomol Struct Dyn; 2018 Feb; 36(3):663-678. PubMed ID: 28162045
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cholesterol Molecules Alter the Energy Landscape of Small Aβ1-42 Oligomers.
    Ngo ST; Nguyen PH; Derreumaux P
    J Phys Chem B; 2021 Mar; 125(9):2299-2307. PubMed ID: 33646777
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Binding of 12-Crown-4 with Alzheimer's Aβ40 and Aβ42 Monomers and Its Effect on Their Conformation: Insight from Molecular Dynamics Simulations.
    Agrawal N; Skelton AA
    Mol Pharm; 2018 Jan; 15(1):289-299. PubMed ID: 29200307
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular dynamics simulation and computational two-dimensional infrared spectroscopic study of model amyloid β-peptide oligomers.
    Xu J; Zhang JZ; Xiang Y
    J Phys Chem A; 2013 Jul; 117(29):6373-9. PubMed ID: 23641734
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual effects of familial Alzheimer's disease mutations (D7H, D7N, and H6R) on amyloid β peptide: correlation dynamics and zinc binding.
    Xu L; Chen Y; Wang X
    Proteins; 2014 Dec; 82(12):3286-97. PubMed ID: 25137638
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Emergence of Alternative Structures in Amyloid Beta 1-42 Monomeric Landscape by N-terminal Hexapeptide Amyloid Inhibitors.
    Chakraborty S; Das P
    Sci Rep; 2017 Aug; 7(1):9941. PubMed ID: 28855598
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of different force fields and temperatures on the structural character of Abeta (12-28) peptide in aqueous solution.
    Cao Z; Liu L; Zhao L; Wang J
    Int J Mol Sci; 2011; 12(11):8259-74. PubMed ID: 22174662
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dihydrochalcone molecules destabilize Alzheimer's amyloid-β protofibrils through binding to the protofibril cavity.
    Jin Y; Sun Y; Lei J; Wei G
    Phys Chem Chem Phys; 2018 Jun; 20(25):17208-17217. PubMed ID: 29900443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.