BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 31296204)

  • 1. Topological integration of RPPA proteomic data with multi-omics data for survival prediction in breast cancer via pathway activity inference.
    Kim TR; Jeong HH; Sohn KA
    BMC Med Genomics; 2019 Jul; 12(Suppl 5):94. PubMed ID: 31296204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies.
    Kim SY; Jeong HH; Kim J; Moon JH; Sohn KA
    Biol Direct; 2019 Apr; 14(1):8. PubMed ID: 31036036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative pathway-based survival prediction utilizing the interaction between gene expression and DNA methylation in breast cancer.
    Kim SY; Kim TR; Jeong HH; Sohn KA
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):68. PubMed ID: 30255812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.
    Tong L; Mitchel J; Chatlin K; Wang MD
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data.
    Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach.
    Ali M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2018 Apr; 34(8):1353-1362. PubMed ID: 29186355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse phase protein arrays in signaling pathways: a data integration perspective.
    Creighton CJ; Huang S
    Drug Des Devel Ther; 2015; 9():3519-27. PubMed ID: 26185419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of RNA-Seq and RPPA data for survival time prediction in cancer patients.
    Isik Z; Ercan ME
    Comput Biol Med; 2017 Oct; 89():397-404. PubMed ID: 28869900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating multi-omics for uncovering the architecture of cross-talking pathways in breast cancer.
    Wang L; Xiao Y; Ping Y; Li J; Zhao H; Li F; Hu J; Zhang H; Deng Y; Tian J; Li X
    PLoS One; 2014; 9(8):e104282. PubMed ID: 25137136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.
    Tong L; Wu H; Wang MD
    Methods; 2021 May; 189():74-85. PubMed ID: 32763377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer.
    Kim SY; Choe EK; Shivakumar M; Kim D; Sohn KA
    Bioinformatics; 2021 Aug; 37(16):2405-2413. PubMed ID: 33543748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased Proportion of Variance Explained and Prediction Accuracy of Survival of Breast Cancer Patients with Use of Whole-Genome Multiomic Profiles.
    Vazquez AI; Veturi Y; Behring M; Shrestha S; Kirst M; Resende MF; de Los Campos G
    Genetics; 2016 Jul; 203(3):1425-38. PubMed ID: 27129736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification.
    Chung RH; Kang CY
    Gigascience; 2019 May; 8(5):. PubMed ID: 31029063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Translational Pipeline for Overall Survival Prediction of Breast Cancer Patients by Decision-Level Integration of Multi-Omics Data.
    Mitchel J; Chatlin K; Tong L; Wang MD
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2019 Nov; 2019():1573-1580. PubMed ID: 32601549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative analysis of multi-platform reverse-phase protein array data for the pharmacodynamic assessment of response to targeted therapies.
    Byron A; Bernhardt S; Ouine B; Cartier A; Macleod KG; Carragher NO; Sibut V; Korf U; Serrels B; de Koning L
    Sci Rep; 2020 Dec; 10(1):21985. PubMed ID: 33319783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of reverse phase protein array (RPPA)-based pathway-activation profiling in 84 non-small cell lung cancer (NSCLC) cell lines as platform for cancer proteomics and biomarker discovery.
    Ummanni R; Mannsperger HA; Sonntag J; Oswald M; Sharma AK; König R; Korf U
    Biochim Biophys Acta; 2014 May; 1844(5):950-9. PubMed ID: 24361481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical utility of reverse phase protein array for molecular classification of breast cancer.
    Negm OH; Muftah AA; Aleskandarany MA; Hamed MR; Ahmad DA; Nolan CC; Diez-Rodriguez M; Tighe PJ; Ellis IO; Rakha EA; Green AR
    Breast Cancer Res Treat; 2016 Jan; 155(1):25-35. PubMed ID: 26661092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data.
    Lin Y; Zhang W; Cao H; Li G; Du W
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32759821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.