These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 31296219)
1. CONFIGURE: A pipeline for identifying context specific regulatory modules from gene expression data and its application to breast cancer. Park S; Hwang D; Yeo YS; Kim H; Kang J BMC Med Genomics; 2019 Jul; 12(Suppl 5):97. PubMed ID: 31296219 [TBL] [Abstract][Full Text] [Related]
2. Identification of breast cancer prognostic modules via differential module selection based on weighted gene Co-expression network analysis. Guo L; Mao L; Lu W; Yang J Biosystems; 2021 Jan; 199():104317. PubMed ID: 33279569 [TBL] [Abstract][Full Text] [Related]
3. RNA-Seq-Based Breast Cancer Subtypes Classification Using Machine Learning Approaches. Yu Z; Wang Z; Yu X; Zhang Z Comput Intell Neurosci; 2020; 2020():4737969. PubMed ID: 33178256 [TBL] [Abstract][Full Text] [Related]
4. Comparisons of gene coexpression network modules in breast cancer and ovarian cancer. Zhang S BMC Syst Biol; 2018 Apr; 12(Suppl 1):8. PubMed ID: 29671401 [TBL] [Abstract][Full Text] [Related]
5. Identifying miRNA sponge modules using biclustering and regulatory scores. Zhang J; Le TD; Liu L; Li J BMC Bioinformatics; 2017 Mar; 18(Suppl 3):44. PubMed ID: 28361682 [TBL] [Abstract][Full Text] [Related]
6. Gene set-based module discovery in the breast cancer transcriptome. Niida A; Smith AD; Imoto S; Aburatani H; Zhang MQ; Akiyama T BMC Bioinformatics; 2009 Feb; 10():71. PubMed ID: 19243633 [TBL] [Abstract][Full Text] [Related]
7. Expression and methylation patterns partition luminal-A breast tumors into distinct prognostic subgroups. Netanely D; Avraham A; Ben-Baruch A; Evron E; Shamir R Breast Cancer Res; 2016 Jul; 18(1):74. PubMed ID: 27386846 [TBL] [Abstract][Full Text] [Related]
8. Identification of key genes unique to the luminal a and basal-like breast cancer subtypes via bioinformatic analysis. Jia R; Li Z; Liang W; Ji Y; Weng Y; Liang Y; Ning P World J Surg Oncol; 2020 Oct; 18(1):268. PubMed ID: 33066779 [TBL] [Abstract][Full Text] [Related]
9. Co-expression modules identified from published immune signatures reveal five distinct immune subtypes in breast cancer. Amara D; Wolf DM; van 't Veer L; Esserman L; Campbell M; Yau C Breast Cancer Res Treat; 2017 Jan; 161(1):41-50. PubMed ID: 27815749 [TBL] [Abstract][Full Text] [Related]
10. Screening of the prognostic targets for breast cancer based co-expression modules analysis. Liu H; Ye H Mol Med Rep; 2017 Oct; 16(4):4038-4044. PubMed ID: 28731166 [TBL] [Abstract][Full Text] [Related]
11. Mixture classification model based on clinical markers for breast cancer prognosis. Zeng T; Liu J Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686 [TBL] [Abstract][Full Text] [Related]
12. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes. Lu X; Li X; Liu P; Qian X; Miao Q; Peng S Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829 [TBL] [Abstract][Full Text] [Related]
13. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data. Xu T; Le TD; Liu L; Wang R; Sun B; Li J PLoS One; 2016; 11(4):e0152792. PubMed ID: 27035433 [TBL] [Abstract][Full Text] [Related]
14. Multiple network algorithm for epigenetic modules via the integration of genome-wide DNA methylation and gene expression data. Ma X; Liu Z; Zhang Z; Huang X; Tang W BMC Bioinformatics; 2017 Jan; 18(1):72. PubMed ID: 28137264 [TBL] [Abstract][Full Text] [Related]
15. Discovering DNA methylation patterns for long non-coding RNAs associated with cancer subtypes. Ma X; Yu L; Wang P; Yang X Comput Biol Chem; 2017 Aug; 69():164-170. PubMed ID: 28501295 [TBL] [Abstract][Full Text] [Related]
16. Identification of co-expression modules and potential biomarkers of breast cancer by WGCNA. Jia R; Zhao H; Jia M Gene; 2020 Aug; 750():144757. PubMed ID: 32387385 [TBL] [Abstract][Full Text] [Related]
17. Identification of genes and pathways involved in kidney renal clear cell carcinoma. Yang W; Yoshigoe K; Qin X; Liu JS; Yang JY; Niemierko A; Deng Y; Liu Y; Dunker A; Chen Z; Wang L; Xu D; Arabnia HR; Tong W; Yang M BMC Bioinformatics; 2014; 15 Suppl 17(Suppl 17):S2. PubMed ID: 25559354 [TBL] [Abstract][Full Text] [Related]
18. MicroRNA expression and gene regulation drive breast cancer progression and metastasis in PyMT mice. Nogales-Cadenas R; Cai Y; Lin JR; Zhang Q; Zhang W; Montagna C; Zhang ZD Breast Cancer Res; 2016 Jul; 18(1):75. PubMed ID: 27449149 [TBL] [Abstract][Full Text] [Related]
19. Network-based cancer genomic data integration for pattern discovery. Zhu F; Li J; Liu J; Min W BMC Genom Data; 2021 Dec; 22(Suppl 1):54. PubMed ID: 34886811 [TBL] [Abstract][Full Text] [Related]
20. Assessment of Gene Set Enrichment Analysis using curated RNA-seq-based benchmarks. Candia J; Ferrucci L PLoS One; 2024; 19(5):e0302696. PubMed ID: 38753612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]