These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
487 related articles for article (PubMed ID: 31296226)
1. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy. Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226 [TBL] [Abstract][Full Text] [Related]
2. Exploiting telerobotics for sensorimotor rehabilitation: a locomotor embodiment. Koh MH; Yen SC; Leung LY; Gans S; Sullivan K; Adibnia Y; Pavel M; Hasson CJ J Neuroeng Rehabil; 2021 Apr; 18(1):66. PubMed ID: 33882949 [TBL] [Abstract][Full Text] [Related]
3. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067 [TBL] [Abstract][Full Text] [Related]
4. Upper limb robot-assisted therapy in subacute and chronic stroke patients using an innovative end-effector haptic device: A pilot study. Mazzoleni S; Battini E; Crecchi R; Dario P; Posteraro F NeuroRehabilitation; 2018; 42(1):43-52. PubMed ID: 29400670 [TBL] [Abstract][Full Text] [Related]
5. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
6. Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods. Just F; Özen Ö; Tortora S; Klamroth-Marganska V; Riener R; Rauter G J Neuroeng Rehabil; 2020 Feb; 17(1):13. PubMed ID: 32024528 [TBL] [Abstract][Full Text] [Related]
7. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices. Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397 [TBL] [Abstract][Full Text] [Related]
8. Robot-assisted arm assessments in spinal cord injured patients: a consideration of concept study. Keller U; Schölch S; Albisser U; Rudhe C; Curt A; Riener R; Klamroth-Marganska V PLoS One; 2015; 10(5):e0126948. PubMed ID: 25996374 [TBL] [Abstract][Full Text] [Related]
9. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation. Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095 [TBL] [Abstract][Full Text] [Related]
10. Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation. Koo D; Chang PH; Sohn MK; Shin JH IEEE Int Conf Rehabil Robot; 2011; 2011():5975505. PubMed ID: 22275701 [TBL] [Abstract][Full Text] [Related]
11. Music meets robotics: a prospective randomized study on motivation during robot aided therapy. Baur K; Speth F; Nagle A; Riener R; Klamroth-Marganska V J Neuroeng Rehabil; 2018 Aug; 15(1):79. PubMed ID: 30115082 [TBL] [Abstract][Full Text] [Related]
12. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study. Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120 [TBL] [Abstract][Full Text] [Related]
13. Customizing Robot-Assisted Passive Neurorehabilitation Exercise Based on Teaching Training Mechanism. Lin Y; Qu Q; Lin Y; He J; Zhang Q; Wang C; Jiang Z; Guo F; Jia J Biomed Res Int; 2021; 2021():9972560. PubMed ID: 34195289 [TBL] [Abstract][Full Text] [Related]
14. HoMEcare aRm rehabiLItatioN (MERLIN): telerehabilitation using an unactuated device based on serious games improves the upper limb function in chronic stroke. Rozevink SG; van der Sluis CK; Garzo A; Keller T; Hijmans JM J Neuroeng Rehabil; 2021 Mar; 18(1):48. PubMed ID: 33726801 [TBL] [Abstract][Full Text] [Related]
15. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057 [TBL] [Abstract][Full Text] [Related]
16. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181 [TBL] [Abstract][Full Text] [Related]
17. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation. Pan L; Song A; Duan S; Xu B Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061 [TBL] [Abstract][Full Text] [Related]
18. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke. Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354 [TBL] [Abstract][Full Text] [Related]
19. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. Gassert R; Dietz V J Neuroeng Rehabil; 2018 Jun; 15(1):46. PubMed ID: 29866106 [TBL] [Abstract][Full Text] [Related]
20. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke. Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]