These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31296442)

  • 21. Influence of domestication on specialized metabolic pathways in fruit crops.
    Dar MS; Dholakia BB; Kulkarni AP; Oak PS; Shanmugam D; Gupta VS; Giri AP
    Planta; 2021 Feb; 253(2):61. PubMed ID: 33538903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research Progress on Genetic Basis of Fruit Quality Traits in Apple (
    Liu W; Chen Z; Jiang S; Wang Y; Fang H; Zhang Z; Chen X; Wang N
    Front Plant Sci; 2022; 13():918202. PubMed ID: 35909724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host.
    Gladieux P; Zhang XG; Róldan-Ruiz I; Caffier V; Leroy T; Devaux M; Van Glabeke S; Coart E; Le Cam B
    Mol Ecol; 2010 Feb; 19(4):658-74. PubMed ID: 20088887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Back to the Origins: Background and Perspectives of Grapevine Domestication.
    Grassi F; De Lorenzis G
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33926017
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Wang N; Jiang S; Zhang Z; Fang H; Xu H; Wang Y; Chen X
    Hortic Res; 2018; 5():70. PubMed ID: 30345062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomics: a potential panacea for the perennial problem.
    McClure KA; Sawler J; Gardner KM; Money D; Myles S
    Am J Bot; 2014 Oct; 101(10):1780-90. PubMed ID: 25326620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A metabolic perspective of selection for fruit quality related to apple domestication and improvement.
    Lin Q; Chen J; Liu X; Wang B; Zhao Y; Liao L; Allan AC; Sun C; Duan Y; Li X; Grierson D; Verdonk JC; Chen K; Han Y; Bi J
    Genome Biol; 2023 Apr; 24(1):95. PubMed ID: 37101232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduced representation genome sequencing reveals patterns of genetic diversity and selection in apple.
    Ma B; Liao L; Peng Q; Fang T; Zhou H; Korban SS; Han Y
    J Integr Plant Biol; 2017 Mar; 59(3):190-204. PubMed ID: 28093854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [De novo domestication to create new crops].
    Yang XP; Yu A; Xu C
    Yi Chuan; 2019 Sep; 41(9):827-835. PubMed ID: 31549681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for host-microbiome co-evolution in apple.
    Abdelfattah A; Tack AJM; Wasserman B; Liu J; Berg G; Norelli J; Droby S; Wisniewski M
    New Phytol; 2022 Jun; 234(6):2088-2100. PubMed ID: 34823272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative population genomics identified genomic regions and candidate genes associated with fruit domestication traits in peach.
    Cao K; Li Y; Deng CH; Gardiner SE; Zhu G; Fang W; Chen C; Wang X; Wang L
    Plant Biotechnol J; 2019 Oct; 17(10):1954-1970. PubMed ID: 30950186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of apple fruit size to tree water status and crop load.
    Naor A; Naschitz S; Peres M; Gal Y
    Tree Physiol; 2008 Aug; 28(8):1255-61. PubMed ID: 18519256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history.
    Li Y; Cao K; Zhu G; Fang W; Chen C; Wang X; Zhao P; Guo J; Ding T; Guan L; Zhang Q; Guo W; Fei Z; Wang L
    Genome Biol; 2019 Feb; 20(1):36. PubMed ID: 30791928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Useful insights from evolutionary biology for developing perennial grain crops.
    DeHaan LR; Van Tassel DL
    Am J Bot; 2014 Oct; 101(10):1801-19. PubMed ID: 25326622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome re-sequencing reveals the evolutionary history of peach fruit edibility.
    Yu Y; Fu J; Xu Y; Zhang J; Ren F; Zhao H; Tian S; Guo W; Tu X; Zhao J; Jiang D; Zhao J; Wu W; Wang G; Ma R; Jiang Q; Wei J; Xie H
    Nat Commun; 2018 Dec; 9(1):5404. PubMed ID: 30573726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genomic consequences of artificial selection during early domestication of a wood fibre crop.
    Mostert-O'Neill MM; Tate H; Reynolds SM; Mphahlele MM; van den Berg G; Verryn SD; Acosta JJ; Borevitz JO; Myburg AA
    New Phytol; 2022 Sep; 235(5):1944-1956. PubMed ID: 35657639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A domestication history of dynamic adaptation and genomic deterioration in Sorghum.
    Smith O; Nicholson WV; Kistler L; Mace E; Clapham A; Rose P; Stevens C; Ware R; Samavedam S; Barker G; Jordan D; Fuller DQ; Allaby RG
    Nat Plants; 2019 Apr; 5(4):369-379. PubMed ID: 30962527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anthropogenic and natural drivers of gene flow in a temperate wild fruit tree: a basis for conservation and breeding programs in apples.
    Cornille A; Feurtey A; Gélin U; Ropars J; Misvanderbrugge K; Gladieux P; Giraud T
    Evol Appl; 2015 Apr; 8(4):373-84. PubMed ID: 25926882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of sorbitol content variation in wild and cultivated apples.
    Fang T; Cai Y; Yang Q; Ogutu CO; Liao L; Han Y
    J Sci Food Agric; 2020 Jan; 100(1):139-144. PubMed ID: 31471896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The extent of adaptive wild introgression in crops.
    Janzen GM; Wang L; Hufford MB
    New Phytol; 2019 Feb; 221(3):1279-1288. PubMed ID: 30368812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.