These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31296537)

  • 1. Binding During Sequence Learning Does Not Alter Cortical Representations of Individual Actions.
    Beukema P; Diedrichsen J; Verstynen TD
    J Neurosci; 2019 Aug; 39(35):6968-6977. PubMed ID: 31296537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Human Primary Motor Cortex in the Production of Skilled Finger Sequences.
    Yokoi A; Arbuckle SA; Diedrichsen J
    J Neurosci; 2018 Feb; 38(6):1430-1442. PubMed ID: 29305534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Repetition Suppression and Pattern Analysis Provides New Insights into the Role of M1 and Parietal Areas in Skilled Sequential Actions.
    Berlot E; Popp NJ; Grafton ST; Diedrichsen J
    J Neurosci; 2021 Sep; 41(36):7649-7661. PubMed ID: 34312223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disengagement of Motor Cortex during Long-Term Learning Tracks the Performance Level of Learned Movements.
    Hwang EJ; Dahlen JE; Mukundan M; Komiyama T
    J Neurosci; 2021 Aug; 41(33):7029-7047. PubMed ID: 34244359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding sequential finger movements from preparatory activity in higher-order motor regions: a functional magnetic resonance imaging multi-voxel pattern analysis.
    Nambu I; Hagura N; Hirose S; Wada Y; Kawato M; Naito E
    Eur J Neurosci; 2015 Nov; 42(10):2851-9. PubMed ID: 26342210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.
    Gobel EW; Parrish TB; Reber PJ
    Neuroimage; 2011 Oct; 58(4):1150-7. PubMed ID: 21771663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of motor-related functional integration during motor sequence learning.
    Coynel D; Marrelec G; Perlbarg V; Pélégrini-Issac M; Van de Moortele PF; Ugurbil K; Doyon J; Benali H; Lehéricy S
    Neuroimage; 2010 Jan; 49(1):759-66. PubMed ID: 19716894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observing Action Sequences Elicits Sequence-Specific Neural Representations in Frontoparietal Brain Regions.
    Apšvalka D; Cross ES; Ramsey R
    J Neurosci; 2018 Nov; 38(47):10114-10128. PubMed ID: 30282731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical re-evaluation of fMRI signatures of motor sequence learning.
    Berlot E; Popp NJ; Diedrichsen J
    Elife; 2020 May; 9():. PubMed ID: 32401193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of Population Activity in Primary Motor Cortex for Single Finger Flexion and Extension.
    Arbuckle SA; Weiler J; Kirk EA; Rice CL; Schieber M; Pruszynski JA; Ejaz N; Diedrichsen J
    J Neurosci; 2020 Nov; 40(48):9210-9223. PubMed ID: 33087474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS; Miyapuram KP; Graydon FX; Doya K
    Neuroimage; 2006 Aug; 32(2):714-27. PubMed ID: 16798015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encoding and recall of finger sequences in experienced pianists compared with musically naïve controls: a combined behavioral and functional imaging study.
    Pau S; Jahn G; Sakreida K; Domin M; Lotze M
    Neuroimage; 2013 Jan; 64():379-87. PubMed ID: 22982586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term training-dependent representation of individual finger movements in the primary motor cortex.
    Ogawa K; Mitsui K; Imai F; Nishida S
    Neuroimage; 2019 Nov; 202():116051. PubMed ID: 31351164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Organization of Hierarchical Motor Sequence Representations in the Human Neocortex.
    Yokoi A; Diedrichsen J
    Neuron; 2019 Sep; 103(6):1178-1190.e7. PubMed ID: 31345643
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Ariani G; Kwon YH; Diedrichsen J
    J Neurophysiol; 2020 May; 123(5):1727-1738. PubMed ID: 32208910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effector-independent and effector-dependent sequence representations underlie general and specific perceptuomotor sequence learning.
    Andresen DR; Marsolek CJ
    J Mot Behav; 2012; 44(1):53-61. PubMed ID: 22242701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor planning brings human primary somatosensory cortex into action-specific preparatory states.
    Ariani G; Pruszynski JA; Diedrichsen J
    Elife; 2022 Jan; 11():. PubMed ID: 35018886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pilot fMRI investigation of representational plasticity associated with motor skill learning and its functional consequences.
    Plow EB; Carey JR
    Brain Imaging Behav; 2012 Sep; 6(3):437-53. PubMed ID: 22454141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence learning is driven by improvements in motor planning.
    Ariani G; Diedrichsen J
    J Neurophysiol; 2019 Jun; 121(6):2088-2100. PubMed ID: 30969809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning.
    Kobayashi M
    Restor Neurol Neurosci; 2010; 28(4):437-48. PubMed ID: 20714068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.