These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 31296900)
1. Metabolomics Analysis of Skeletal Muscles from FKRP-Deficient Mice Indicates Improvement After Gene Replacement Therapy. Vannoy CH; Leroy V; Broniowska K; Lu QL Sci Rep; 2019 Jul; 9(1):10070. PubMed ID: 31296900 [TBL] [Abstract][Full Text] [Related]
2. Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of α-dystroglycan and improves muscle functions. Xu L; Lu PJ; Wang CH; Keramaris E; Qiao C; Xiao B; Blake DJ; Xiao X; Lu QL Mol Ther; 2013 Oct; 21(10):1832-40. PubMed ID: 23817215 [TBL] [Abstract][Full Text] [Related]
3. Adeno-associated virus-mediated overexpression of LARGE rescues α-dystroglycan function in dystrophic mice with mutations in the fukutin-related protein. Vannoy CH; Xu L; Keramaris E; Lu P; Xiao X; Lu QL Hum Gene Ther Methods; 2014 Jun; 25(3):187-96. PubMed ID: 24635668 [TBL] [Abstract][Full Text] [Related]
4. FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy. Wood AJ; Lin CH; Li M; Nishtala K; Alaei S; Rossello F; Sonntag C; Hersey L; Miles LB; Krisp C; Dudczig S; Fulcher AJ; Gibertini S; Conroy PJ; Siegel A; Mora M; Jusuf P; Packer NH; Currie PD Nat Commun; 2021 May; 12(1):2951. PubMed ID: 34012031 [TBL] [Abstract][Full Text] [Related]
5. Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies. Chan YM; Keramaris-Vrantsis E; Lidov HG; Norton JH; Zinchenko N; Gruber HE; Thresher R; Blake DJ; Ashar J; Rosenfeld J; Lu QL Hum Mol Genet; 2010 Oct; 19(20):3995-4006. PubMed ID: 20675713 [TBL] [Abstract][Full Text] [Related]
10. A new patient-derived iPSC model for dystroglycanopathies validates a compound that increases glycosylation of α-dystroglycan. Kim J; Lana B; Torelli S; Ryan D; Catapano F; Ala P; Luft C; Stevens E; Konstantinidis E; Louzada S; Fu B; Paredes-Redondo A; Chan AE; Yang F; Stemple DL; Liu P; Ketteler R; Selwood DL; Muntoni F; Lin YY EMBO Rep; 2019 Nov; 20(11):e47967. PubMed ID: 31566294 [TBL] [Abstract][Full Text] [Related]
11. Gene transfer establishes primacy of striated vs. smooth muscle sarcoglycan complex in limb-girdle muscular dystrophy. Durbeej M; Sawatzki SM; Barresi R; Schmainda KM; Allamand V; Michele DE; Campbell KP Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8910-5. PubMed ID: 12851463 [TBL] [Abstract][Full Text] [Related]
12. AAV-mediated transfer of FKRP shows therapeutic efficacy in a murine model but requires control of gene expression. Gicquel E; Maizonnier N; Foltz SJ; Martin WJ; Bourg N; Svinartchouk F; Charton K; Beedle AM; Richard I Hum Mol Genet; 2017 May; 26(10):1952-1965. PubMed ID: 28334834 [TBL] [Abstract][Full Text] [Related]
13. Efficient engraftment of pluripotent stem cell-derived myogenic progenitors in a novel immunodeficient mouse model of limb girdle muscular dystrophy 2I. Azzag K; Ortiz-Cordero C; Oliveira NAJ; Magli A; Selvaraj S; Tungtur S; Upchurch W; Iaizzo PA; Lu QL; Perlingeiro RCR Skelet Muscle; 2020 Apr; 10(1):10. PubMed ID: 32321586 [TBL] [Abstract][Full Text] [Related]
14. NAD+ enhances ribitol and ribose rescue of α-dystroglycan functional glycosylation in human FKRP-mutant myotubes. Ortiz-Cordero C; Magli A; Dhoke NR; Kuebler T; Selvaraj S; Oliveira NA; Zhou H; Sham YY; Bang AG; Perlingeiro RC Elife; 2021 Jan; 10():. PubMed ID: 33513091 [TBL] [Abstract][Full Text] [Related]
15. Reduced expression of fukutin related protein in mice results in a model for fukutin related protein associated muscular dystrophies. Ackroyd MR; Skordis L; Kaluarachchi M; Godwin J; Prior S; Fidanboylu M; Piercy RJ; Muntoni F; Brown SC Brain; 2009 Feb; 132(Pt 2):439-51. PubMed ID: 19155270 [TBL] [Abstract][Full Text] [Related]
16. Improved efficacy of FKRP AAV gene therapy by combination with ribitol treatment for LGMD2I. Cataldi MP; Vannoy CH; Blaeser A; Tucker JD; Leroy V; Rawls R; Killilee J; Holbrook MC; Lu QL Mol Ther; 2023 Dec; 31(12):3478-3489. PubMed ID: 37919902 [TBL] [Abstract][Full Text] [Related]
17. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Brockington M; Blake DJ; Prandini P; Brown SC; Torelli S; Benson MA; Ponting CP; Estournet B; Romero NB; Mercuri E; Voit T; Sewry CA; Guicheney P; Muntoni F Am J Hum Genet; 2001 Dec; 69(6):1198-209. PubMed ID: 11592034 [TBL] [Abstract][Full Text] [Related]
18. Profiling of the muscle-specific dystroglycan interactome reveals the role of Hippo signaling in muscular dystrophy and age-dependent muscle atrophy. Yatsenko AS; Kucherenko MM; Xie Y; Aweida D; Urlaub H; Scheibe RJ; Cohen S; Shcherbata HR BMC Med; 2020 Jan; 18(1):8. PubMed ID: 31959160 [TBL] [Abstract][Full Text] [Related]
19. Defective autophagy and increased apoptosis contribute toward the pathogenesis of FKRP-associated muscular dystrophies. Ortiz-Cordero C; Bincoletto C; Dhoke NR; Selvaraj S; Magli A; Zhou H; Kim DH; Bang AG; Perlingeiro RCR Stem Cell Reports; 2021 Nov; 16(11):2752-2767. PubMed ID: 34653404 [TBL] [Abstract][Full Text] [Related]
20. Restoration of Functional Glycosylation of α-Dystroglycan in FKRP Mutant Mice Is Associated with Muscle Regeneration. Awano H; Blaeser A; Keramaris E; Xu L; Tucker J; Wu B; Lu P; Lu QL Am J Pathol; 2015 Jul; 185(7):2025-37. PubMed ID: 25976249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]