These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31296975)

  • 1. An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification.
    Shen S; Han SX; Aberle DR; Bui AA; Hsu W
    Expert Syst Appl; 2019 Aug; 128():84-95. PubMed ID: 31296975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Synthesizing Semantic Characteristics Lung Nodules Classification Method Based on 3D Convolutional Neural Network.
    Dong Y; Li X; Yang Y; Wang M; Gao B
    Bioengineering (Basel); 2023 Oct; 10(11):. PubMed ID: 38002369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EDICNet: An end-to-end detection and interpretable malignancy classification network for pulmonary nodules in computed tomography.
    Lin Y; Wei L; Han SX; Aberle DR; Hsu W
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11314():. PubMed ID: 32606487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating automatically learned pulmonary nodule attributes into a convolutional neural network to improve accuracy of benign-malignant nodule classification.
    Dai Y; Yan S; Zheng B; Song C
    Phys Med Biol; 2018 Dec; 63(24):245004. PubMed ID: 30524071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs.
    Gu Y; Lu X; Yang L; Zhang B; Yu D; Zhao Y; Gao L; Wu L; Zhou T
    Comput Biol Med; 2018 Dec; 103():220-231. PubMed ID: 30390571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IMAL-Net: Interpretable multi-task attention learning network for invasive lung adenocarcinoma screening in CT images.
    Wang J; Yuan C; Han C; Wen Y; Lu H; Liu C; She Y; Deng J; Li B; Qian D; Chen C
    Med Phys; 2021 Dec; 48(12):7913-7929. PubMed ID: 34674280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulmonary nodule classification with deep residual networks.
    Nibali A; He Z; Wollersheim D
    Int J Comput Assist Radiol Surg; 2017 Oct; 12(10):1799-1808. PubMed ID: 28501942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CoLe-CNN: Context-learning convolutional neural network with adaptive loss function for lung nodule segmentation.
    Pezzano G; Ribas Ripoll V; Radeva P
    Comput Methods Programs Biomed; 2021 Jan; 198():105792. PubMed ID: 33130496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MS-Net: Learning to assess the malignant status of a lung nodule by a radiologist and her peers.
    Dai D; Dong C; Li Z; Xu S
    J Appl Clin Med Phys; 2023 Jul; 24(7):e13964. PubMed ID: 36929569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CAD system for lung nodule detection using deep learning with CNN.
    Manickavasagam R; Selvan S; Selvan M
    Med Biol Eng Comput; 2022 Jan; 60(1):221-228. PubMed ID: 34811644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of lung nodules in CT scans using three-dimensional deep convolutional neural networks with a checkpoint ensemble method.
    Jung H; Kim B; Lee I; Lee J; Kang J
    BMC Med Imaging; 2018 Dec; 18(1):48. PubMed ID: 30509191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agile convolutional neural network for pulmonary nodule classification using CT images.
    Zhao X; Liu L; Qi S; Teng Y; Li J; Qian W
    Int J Comput Assist Radiol Surg; 2018 Apr; 13(4):585-595. PubMed ID: 29473129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved 3-D attention CNN with hybrid loss and feature fusion for pulmonary nodule classification.
    Huang YS; Wang TC; Huang SZ; Zhang J; Chen HM; Chang YC; Chang RF
    Comput Methods Programs Biomed; 2023 Feb; 229():107278. PubMed ID: 36463674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lung nodule diagnosis and cancer histology classification from computed tomography data by convolutional neural networks: A survey.
    Tomassini S; Falcionelli N; Sernani P; Burattini L; Dragoni AF
    Comput Biol Med; 2022 Jul; 146():105691. PubMed ID: 35691714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation.
    Wang H; Zhao T; Li LC; Pan H; Liu W; Gao H; Han F; Wang Y; Qi Y; Liang Z
    J Xray Sci Technol; 2018; 26(2):171-187. PubMed ID: 29036877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretable neural networks: principles and applications.
    Liu Z; Xu F
    Front Artif Intell; 2023; 6():974295. PubMed ID: 37899962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies.
    Nasrullah N; Sang J; Alam MS; Mateen M; Cai B; Hu H
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31466261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.
    Huang W; Xue Y; Wu Y
    PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep convolutional neural network architecture for interstitial lung disease pattern classification.
    Huang S; Lee F; Miao R; Si Q; Lu C; Chen Q
    Med Biol Eng Comput; 2020 Apr; 58(4):725-737. PubMed ID: 31965407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep neural network pulmonary nodule segmentation methods for CT images: Literature review and experimental comparisons.
    Zhi L; Jiang W; Zhang S; Zhou T
    Comput Biol Med; 2023 Sep; 164():107321. PubMed ID: 37595518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.