BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31297195)

  • 1. Simulating graphene oxide nanomaterial phototransformation and transport in surface water.
    Han Y; Knightes CD; Bouchard D; Zepp R; Avant B; Hsieh HS; Chang X; Acrey B; Henderson WM; Spear J
    Environ Sci Nano; 2019; 6(1):180-194. PubMed ID: 31297195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental fate of multiwalled carbon nanotubes and graphene oxide across different aquatic ecosystems.
    Avant B; Bouchard D; Chang X; Hsieh HS; Acrey B; Han Y; Spear J; Zepp R; Knightes CD
    NanoImpact; 2019; 13():1-12. PubMed ID: 31297468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of sunlight on the fate of graphene oxide and reduced graphene oxide nanomaterials in the natural surface water.
    Shams M; Guiney LM; Ramesh M; Hersam MC; Chowdhury I
    Sci Total Environ; 2023 May; 874():162427. PubMed ID: 36841399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating Multiwalled Carbon Nanotube Transport in Surface Water Systems Using the Water Quality Analysis Simulation Program (WASP).
    Bouchard D; Knightes C; Chang X; Avant B
    Environ Sci Technol; 2017 Oct; 51(19):11174-11184. PubMed ID: 28876918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EPS-corona formation on graphene family nanomaterials (GO, rGO and graphene) and its role in mitigating their toxic effects in the marine alga Chlorella sp.
    Debroy A; Roy N; Giri S; Pulimi M; Chandrasekaran N; Peijnenburg WJGM; Mukherjee A
    Environ Pollut; 2024 Jan; 341():123015. PubMed ID: 38008250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation.
    Zhao J; Wang Z; White JC; Xing B
    Environ Sci Technol; 2014 Sep; 48(17):9995-10009. PubMed ID: 25122195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter.
    Chowdhury I; Mansukhani ND; Guiney LM; Hersam MC; Bouchard D
    Environ Sci Technol; 2015 Sep; 49(18):10886-93. PubMed ID: 26280799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling framework for simulating concentrations of solute chemicals, nanoparticles, and solids in surface waters and sediments: WASP8 Advanced Toxicant Module.
    Knightes CD; Ambrose RB; Avant B; Han Y; Acrey B; Bouchard DC; Zepp R; Wool T
    Environ Model Softw; 2019; 111():444-458. PubMed ID: 31297031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous aggregation and stability of graphene nanoplatelets, graphene oxide, and reduced graphene oxide in simulated natural environmental conditions: complex roles of surface and solution chemistry.
    Ye N; Wang Z; Wang S; Fang H; Wang D
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10956-10965. PubMed ID: 29399742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular localization and toxicity of graphene oxide and reduced graphene oxide nanoplatelets to mussel hemocytes in vitro.
    Katsumiti A; Tomovska R; Cajaraville MP
    Aquat Toxicol; 2017 Jul; 188():138-147. PubMed ID: 28521151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.
    Gurunathan S; Han JW; Dayem AA; Eppakayala V; Kim JH
    Int J Nanomedicine; 2012; 7():5901-14. PubMed ID: 23226696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phototransformation of Graphene Oxide on the Removal of Sulfamethazine in a Water Environment.
    Liu FF; Li MR; Wang SC; Zhang YX; Liu GZ; Fan JL
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sunlight-induced transformation of sulfadiazine and sulfamethoxazole in surface waters and wastewater effluents.
    Bahnmüller S; von Gunten U; Canonica S
    Water Res; 2014 Jun; 57():183-92. PubMed ID: 24721665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of environmental aging on the adsorption behavior of antibiotics from aqueous solutions in microplastic-graphene coexisting systems.
    Liu N; Yu F; Wang Y; Ma J
    Sci Total Environ; 2022 Feb; 806(Pt 4):150956. PubMed ID: 34656568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of Reduced Graphene Oxide by Using Three Different Microorganisms and Investigation of Their Cell Interactions.
    Utkan G; Yumusak G; Tunali BC; Ozturk T; Turk M
    ACS Omega; 2023 Aug; 8(34):31188-31200. PubMed ID: 37663476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentration- and time-dependence toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets upon zebrafish liver cell line.
    Siqueira PR; Souza JP; Estevão BM; Altei WF; Carmo TLL; Santos FA; Araújo HSS; Zucolotto V; Fernandes MN
    Aquat Toxicol; 2022 Jul; 248():106199. PubMed ID: 35613511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of phenanthrene and 1-naphthol to graphene oxide and
    Wang F; Jia Z; Su W; Shang Y; Wang ZL
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11062-11073. PubMed ID: 30788701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photochemical transformation of graphene oxide in sunlight.
    Hou WC; Chowdhury I; Goodwin DG; Henderson WM; Fairbrother DH; Bouchard D; Zepp RG
    Environ Sci Technol; 2015 Mar; 49(6):3435-43. PubMed ID: 25671674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of the Environmental Fate and Transformation of Nano Copper Oxide in a Freshwater Environment.
    Ross BN; Knightes CD
    ACS ES T Water; 2022 Sep; 2(9):1532-1543. PubMed ID: 36118665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological interactions of graphene-family nanomaterials: an interdisciplinary review.
    Sanchez VC; Jachak A; Hurt RH; Kane AB
    Chem Res Toxicol; 2012 Jan; 25(1):15-34. PubMed ID: 21954945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.