These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31297461)

  • 1. Sickling-preventive effects of rutin is associated with modulation of deoxygenated haemoglobin, 2,3-bisphosphoglycerate mutase, redox status and alteration of functional chemistry in sickle erythrocytes.
    Muhammad A; Waziri AD; Forcados GE; Sanusi B; Sani H; Malami I; Abubakar IB; Oluwatoyin HY; Adinoyi OA; Mohammed HA
    Heliyon; 2019 Jun; 5(6):e01905. PubMed ID: 31297461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sickling-suppressive effects of chrysin may be associated with sequestration of deoxy-haemoglobin, 2,3-bisphosphoglycerate mutase, alteration of redox homeostasis and functional chemistry of sickle erythrocytes.
    Muhammad A; Waziri AD; Forcados GE; Sanusi B; Sani H; Malami I; Abubakar IB; Muhammad A; Muhammad RA; Mohammed HA
    Hum Exp Toxicol; 2020 Apr; 39(4):537-546. PubMed ID: 31876182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antisickling effect of chrysin is associated with modulation of oxygenated and deoxygenated haemoglobin via alteration of functional chemistry and metabolic pathways of human sickle erythrocytes.
    Nwankwo HC; Idowu AA; Muhammad A; Waziri AD; Abubakar YS; Bashir M; Erukainure OL
    Hum Exp Toxicol; 2021 Dec; 40(12_suppl):S108-S124. PubMed ID: 34151613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Underutilized legumes, Cajanus cajan and Glycine max may bring about antisickling effect in sickle cell disease by modulation of redox homeostasis in sickled erythrocytes and alteration of its functional chemistry.
    Elemo GN; Erukainure OL; Okafor JNC; Banerjee P; Preissner R; Nwachukwu Nicholas-Okpara VA; Atolani O; Omowunmi O; Ezeanyanaso CS; Awosika A; Shode F
    J Food Biochem; 2022 Sep; 46(9):e14322. PubMed ID: 35894096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. t-BOOH-induced oxidative damage in sickle red blood cells and the role of flavonoids.
    Cesquini M; Torsoni MA; Stoppa GR; Ogo SH
    Biomed Pharmacother; 2003; 57(3-4):124-9. PubMed ID: 12818473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New developments in anti-sickling agents: can drugs directly prevent the polymerization of sickle haemoglobin in vivo?
    Oder E; Safo MK; Abdulmalik O; Kato GJ
    Br J Haematol; 2016 Oct; 175(1):24-30. PubMed ID: 27605087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monodora myristica (African nutmeg) modulates redox homeostasis and alters functional chemistry in sickled erythrocytes.
    Erukainure OL; Ajiboye JA; Abbah UA; Asieba GO; Mamuru S; Zaruwa MZ; Manhas N; Singh P; Islam MS
    Hum Exp Toxicol; 2018 May; 37(5):458-467. PubMed ID: 28565971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro assessment of the anti-sickling properties of Buchholzia coriacea and Mucuna pruriens seed extracts.
    Ikechukwu EL; Okafor PN; Egba SI
    In Vitro Cell Dev Biol Anim; 2020 Oct; 56(9):773-782. PubMed ID: 33025340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sickling-induced binding of immunoglobulin to sickle erythrocytes.
    Green GA; Kalra VK
    Blood; 1988 Mar; 71(3):636-9. PubMed ID: 3278749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into the complex pathophysiology of sickle cell anaemia and possible treatment.
    Piccin A; Murphy C; Eakins E; Rondinelli MB; Daves M; Vecchiato C; Wolf D; Mc Mahon C; Smith OP
    Eur J Haematol; 2019 Apr; 102(4):319-330. PubMed ID: 30664257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rutin protects t‑butyl hydroperoxide-induced oxidative impairment via modulating the Nrf2 and iNOS activity.
    Singh S; Singh DK; Meena A; Dubey V; Masood N; Luqman S
    Phytomedicine; 2019 Mar; 55():92-104. PubMed ID: 30668448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease.
    Oksenberg D; Dufu K; Patel MP; Chuang C; Li Z; Xu Q; Silva-Garcia A; Zhou C; Hutchaleelaha A; Patskovska L; Patskovsky Y; Almo SC; Sinha U; Metcalf BW; Archer DR
    Br J Haematol; 2016 Oct; 175(1):141-53. PubMed ID: 27378309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GBT021601 improves red blood cell health and the pathophysiology of sickle cell disease in a murine model.
    Dufu K; Alt C; Strutt S; Partridge J; Tang T; Siu V; Liao-Zou H; Rademacher P; Williams AT; Muller CR; Geng X; Pochron MP; Dang AN; Cabrales P; Li Z; Oksenberg D; Cathers BE
    Br J Haematol; 2023 Jul; 202(1):173-183. PubMed ID: 36960712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyridoxal phosphate as an antisickling agent in vitro.
    Kark JA; Tarassoff PG; Bongiovanni R
    J Clin Invest; 1983 May; 71(5):1224-9. PubMed ID: 6853710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulatory role of rutin on 2,5-hexanedione-induced chromosomal and DNA damage in rats: validation of computational predictions.
    Muhammad A; Arthur DE; Babangida S; Erukainure OL; Malami I; Sani H; Abdulhamid AW; Ajiboye IO; Saka AA; Hamza NM; Asema S; Ado ZM; Musa TI
    Drug Chem Toxicol; 2020 Mar; 43(2):113-126. PubMed ID: 29745774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells.
    Abdulmalik O; Safo MK; Chen Q; Yang J; Brugnara C; Ohene-Frempong K; Abraham DJ; Asakura T
    Br J Haematol; 2005 Feb; 128(4):552-61. PubMed ID: 15686467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substituted benzaldehydes designed to increase the oxygen affinity of human haemoglobin and inhibit the sickling of sickle erythrocytes.
    Beddell CR; Goodford PJ; Kneen G; White RD; Wilkinson S; Wootton R
    Br J Pharmacol; 1984 Jun; 82(2):397-407. PubMed ID: 6733364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antisickling effects of 2,3-diphosphoglycerate depletion.
    Poillon WN; Kim BC; Labotka RJ; Hicks CU; Kark JA
    Blood; 1995 Jun; 85(11):3289-96. PubMed ID: 7756662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sickling-induced binding of autologous IgG to erythrocytes heterozygous for sickle hemoglobin.
    Green GA
    Biochem Med Metab Biol; 1990 Apr; 43(2):105-11. PubMed ID: 2346668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.