BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 31297463)

  • 1. A fluidized-bed reactor for the photocatalytic mineralization of phenol on TiO
    Rincón GJ; La Motta EJ
    Heliyon; 2019 Jun; 5(6):e01966. PubMed ID: 31297463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic degradation of phenol using Ag core-TiO
    Shet A; Shetty K V
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20055-20064. PubMed ID: 26564193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.
    Ferguson MA; Hering JG
    Environ Sci Technol; 2006 Jul; 40(13):4261-7. PubMed ID: 16856744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of support characteristics and preparation method on photocatalytic activity of TiO
    Radwan EK; Langford CH; Achari G
    R Soc Open Sci; 2018 Sep; 5(9):180918. PubMed ID: 30839734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream.
    Ling CM; Mohamed AR; Bhatia S
    Chemosphere; 2004 Nov; 57(7):547-54. PubMed ID: 15488916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.
    Yang S; Zhu W; Wang J; Chen Z
    J Hazard Mater; 2008 May; 153(3):1248-53. PubMed ID: 17980483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic-oxidation and photo-persulfate-oxidation of sulfadiazine in a laboratory-scale reactor: Analysis of catalyst support, oxidant dosage, removal-rate and degradation pathway.
    Yadav MSP; Neghi N; Kumar M; Varghese GK
    J Environ Manage; 2018 Sep; 222():164-173. PubMed ID: 29843089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor.
    Nam W; Kim J; Han G
    Chemosphere; 2002 Jun; 47(9):1019-24. PubMed ID: 12108693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fixed-bed reactor packed with pumice-supported TiO
    Morales-Cárcamo SJ; Ebratt-Charris Y; Quiñones-Murillo DH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(8):667-674. PubMed ID: 35856186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures.
    Sundaresan N; Philip L
    Water Sci Technol; 2008; 58(4):819-30. PubMed ID: 18776617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic degradation of ibuprofen in water using TiO
    Tanveer M; Guyer GT; Abbas G
    Water Environ Res; 2019 Sep; 91(9):822-829. PubMed ID: 30884028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of supported nano-TiO2/ZSM-5/silica gel (SNTZS): photocatalytic degradation of phenol.
    Zainudin NF; Abdullah AZ; Mohamed AR
    J Hazard Mater; 2010 Feb; 174(1-3):299-306. PubMed ID: 19818556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated carbon supported TiO2-photocatalysis doped with Fe ions for continuous treatment of dye wastewater in a dynamic reactor.
    Li Y; Chen J; Liu J; Ma M; Chen W; Li L
    J Environ Sci (China); 2010; 22(8):1290-6. PubMed ID: 21179971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.
    Tisa F; Abdul Raman AA; Wan Daud WMA
    J Environ Manage; 2014 Dec; 146():260-275. PubMed ID: 25190594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2 coating of high surface area silica gel by chemical vapor deposition of TiCl4 in a fluidized-bed reactor.
    Xia W; Mei B; Sánchez MD; Strunk J; Muhler M
    J Nanosci Nanotechnol; 2011 Sep; 11(9):8152-7. PubMed ID: 22097546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.
    Hamzezadeh-Nakhjavani S; Tavakoli O; Akhlaghi SP; Salehi Z; Esmailnejad-Ahranjani P; Arpanaei A
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18859-73. PubMed ID: 26206125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Floating bed reactor for visible light induced photocatalytic degradation of Acid Yellow 17 using polyaniline-TiO
    Nair VR; Shetty Kodialbail V
    Environ Sci Pollut Res Int; 2020 May; 27(13):14441-14453. PubMed ID: 32072418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles.
    Hemmati Borji S; Nasseri S; Mahvi AH; Nabizadeh R; Javadi AH
    J Environ Health Sci Eng; 2014; 12():101. PubMed ID: 25105016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous adsorption and recovery of Cr(VI) in different types of reactors.
    Bai SR; Abraham TE
    Biotechnol Prog; 2005; 21(6):1692-9. PubMed ID: 16321053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.