These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Pathogenic variants that alter protein code often disrupt splicing. Soemedi R; Cygan KJ; Rhine CL; Wang J; Bulacan C; Yang J; Bayrak-Toydemir P; McDonald J; Fairbrother WG Nat Genet; 2017 Jun; 49(6):848-855. PubMed ID: 28416821 [TBL] [Abstract][Full Text] [Related]
4. Assessing predictions of the impact of variants on splicing in CAGI5. Mount SM; Avsec Ž; Carmel L; Casadio R; Çelik MH; Chen K; Cheng J; Cohen NE; Fairbrother WG; Fenesh T; Gagneur J; Gotea V; Holzer T; Lin CF; Martelli PL; Naito T; Nguyen TYD; Savojardo C; Unger R; Wang R; Yang Y; Zhao H Hum Mutat; 2019 Sep; 40(9):1215-1224. PubMed ID: 31301154 [TBL] [Abstract][Full Text] [Related]
5. Vex-seq: high-throughput identification of the impact of genetic variation on pre-mRNA splicing efficiency. Adamson SI; Zhan L; Graveley BR Genome Biol; 2018 Jun; 19(1):71. PubMed ID: 29859120 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of a large set of BRCA2 exon 7 variants highlights the predictive value of hexamer scores in detecting alterations of exonic splicing regulatory elements. Di Giacomo D; Gaildrat P; Abuli A; Abdat J; Frébourg T; Tosi M; Martins A Hum Mutat; 2013 Nov; 34(11):1547-57. PubMed ID: 23983145 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning Approaches for the Prioritization of Genomic Variants Impacting Pre-mRNA Splicing. Rowlands CF; Baralle D; Ellingford JM Cells; 2019 Nov; 8(12):. PubMed ID: 31779139 [TBL] [Abstract][Full Text] [Related]
8. A Multiplexed Assay for Exon Recognition Reveals that an Unappreciated Fraction of Rare Genetic Variants Cause Large-Effect Splicing Disruptions. Chong R; Insigne KD; Yao D; Burghard CP; Wang J; Hsiao YE; Jones EM; Goodman DB; Xiao X; Kosuri S Mol Cell; 2019 Jan; 73(1):183-194.e8. PubMed ID: 30503770 [TBL] [Abstract][Full Text] [Related]
9. In vivo and In vitro methods to identify DNA sequence variants that alter RNA Splicing. Patel PN; Gorham JM; Ito K; Seidman CE Curr Protoc Hum Genet; 2018 Apr; 97(1):e60. PubMed ID: 30038698 [TBL] [Abstract][Full Text] [Related]
10. Spliceman2: a computational web server that predicts defects in pre-mRNA splicing. Cygan KJ; Sanford CH; Fairbrother WG Bioinformatics; 2017 Sep; 33(18):2943-2945. PubMed ID: 28911038 [TBL] [Abstract][Full Text] [Related]
11. Predicting the impact of single nucleotide variants on splicing via sequence-based deep neural networks and genomic features. Naito T Hum Mutat; 2019 Sep; 40(9):1261-1269. PubMed ID: 31090248 [TBL] [Abstract][Full Text] [Related]
12. Leveraging splice-affecting variant predictors and a minigene validation system to identify Mendelian disease-causing variants among exon-captured variants of uncertain significance. Soens ZT; Branch J; Wu S; Yuan Z; Li Y; Li H; Wang K; Xu M; Rajan L; Motta FL; Simões RT; Lopez-Solache I; Ajlan R; Birch DG; Zhao P; Porto FB; Sallum J; Koenekoop RK; Sui R; Chen R Hum Mutat; 2017 Nov; 38(11):1521-1533. PubMed ID: 28714225 [TBL] [Abstract][Full Text] [Related]
13. Functional classification of DNA variants by hybrid minigenes: Identification of 30 spliceogenic variants of BRCA2 exons 17 and 18. Fraile-Bethencourt E; Díez-Gómez B; Velásquez-Zapata V; Acedo A; Sanz DJ; Velasco EA PLoS Genet; 2017 Mar; 13(3):e1006691. PubMed ID: 28339459 [TBL] [Abstract][Full Text] [Related]
14. Whole USH2A Gene Sequencing Identifies Several New Deep Intronic Mutations. Liquori A; Vaché C; Baux D; Blanchet C; Hamel C; Malcolm S; Koenig M; Claustres M; Roux AF Hum Mutat; 2016 Feb; 37(2):184-93. PubMed ID: 26629787 [TBL] [Abstract][Full Text] [Related]
15. Massively parallel reporter assays discover de novo exonic splicing mutants in paralogs of Autism genes. Rhine CL; Neil C; Wang J; Maguire S; Buerer L; Salomon M; Meremikwu IC; Kim J; Strande NT; Fairbrother WG PLoS Genet; 2022 Jan; 18(1):e1009884. PubMed ID: 35051175 [TBL] [Abstract][Full Text] [Related]
16. Performance evaluation of computational methods for splice-disrupting variants and improving the performance using the machine learning-based framework. Liu H; Dai J; Li K; Sun Y; Wei H; Wang H; Zhao C; Wang DW Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35976049 [TBL] [Abstract][Full Text] [Related]
17. NGS for Sequence Variants. Teng S Adv Exp Med Biol; 2016; 939():1-20. PubMed ID: 27807741 [TBL] [Abstract][Full Text] [Related]
18. CAGI experiments: Modeling sequence variant impact on gene splicing using predictions from computational tools. Gotea V; Margolin G; Elnitski L Hum Mutat; 2019 Sep; 40(9):1252-1260. PubMed ID: 31066132 [TBL] [Abstract][Full Text] [Related]
19. Defective pre-mRNA splicing in PKD1 due to presumed missense and synonymous mutations causing autosomal dominant polycystic disease. Gonzalez-Paredes FJ; Ramos-Trujillo E; Claverie-Martin F Gene; 2014 Aug; 546(2):243-9. PubMed ID: 24907393 [TBL] [Abstract][Full Text] [Related]
20. Genome sequencing reveals a deep intronic splicing Wooderchak-Donahue WL; McDonald J; Farrell A; Akay G; Velinder M; Johnson P; VanSant-Webb C; Margraf R; Briggs E; Whitehead KJ; Thomson J; Lin AE; Pyeritz RE; Marth G; Bayrak-Toydemir P J Med Genet; 2018 Dec; 55(12):824-830. PubMed ID: 30244195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]