These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 31298034)
41. The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes. Meyer TJ; Huynh MH Inorg Chem; 2003 Dec; 42(25):8140-60. PubMed ID: 14658865 [TBL] [Abstract][Full Text] [Related]
42. Reactions of actinide ions with ethylene oxide. Gibson JK J Mass Spectrom; 2001 Mar; 36(3):284-93. PubMed ID: 11312520 [TBL] [Abstract][Full Text] [Related]
43. Complexation behavior of trivalent actinides and lanthanides with 1,10-phenanthroline-2,9-dicarboxylic acid based ligands: insight from density functional theory. Manna D; Ghanty TK Phys Chem Chem Phys; 2012 Aug; 14(31):11060-9. PubMed ID: 22763671 [TBL] [Abstract][Full Text] [Related]
44. Nitrogen Reduction by Multimetallic trans-Uranium Actinide Complexes: A Theoretical Comparison of Np and Pu to U. Panthi D; Adeyiga O; Dandu NK; Odoh SO Inorg Chem; 2019 May; 58(10):6731-6741. PubMed ID: 31050297 [TBL] [Abstract][Full Text] [Related]
45. Experimental and Theoretical Comparison of Transition-Metal and Actinide Tetravalent Schiff Base Coordination Complexes. Klamm BE; Windorff CJ; Celis-Barros C; Marsh ML; Meeker DS; Albrecht-Schmitt TE Inorg Chem; 2018 Dec; 57(24):15389-15398. PubMed ID: 30500182 [TBL] [Abstract][Full Text] [Related]
46. Organometallic uranium(V)-imido halide complexes: from synthesis to electronic structure and bonding. Graves CR; Yang P; Kozimor SA; Vaughn AE; Clark DL; Conradson SD; Schelter EJ; Scott BL; Thompson JD; Hay PJ; Morris DE; Kiplinger JL J Am Chem Soc; 2008 Apr; 130(15):5272-85. PubMed ID: 18366174 [TBL] [Abstract][Full Text] [Related]
47. Experimental and theoretical comparison of actinide and lanthanide bonding in M[N(EPR(2))(2)](3) complexes (M = U, Pu, La, Ce; E = S, Se, Te; R = Ph, iPr, H). Gaunt AJ; Reilly SD; Enriquez AE; Scott BL; Ibers JA; Sekar P; Ingram KI; Kaltsoyannis N; Neu MP Inorg Chem; 2008 Jan; 47(1):29-41. PubMed ID: 18020446 [TBL] [Abstract][Full Text] [Related]
48. Energy decomposition analysis of metal-metal bonding in [M2X8]2- (X=Cl, br) complexes of 5f (U, Np, Pu), 5d (W, Re, Os), and 4d (Mo, Tc, Ru) elements. Cavigliasso G; Kaltsoyannis N Inorg Chem; 2007 Apr; 46(9):3557-65. PubMed ID: 17381084 [TBL] [Abstract][Full Text] [Related]
49. Enhancing Actinide(III) over Lanthanide(III) Selectivity through Hard-by-Soft Donor Substitution: Exploitation and Implication of Near-Degeneracy-Driven Covalency. Sadhu B; Dolg M Inorg Chem; 2019 Aug; 58(15):9738-9748. PubMed ID: 31343876 [TBL] [Abstract][Full Text] [Related]
50. Highly stable actinide(III) complexes supported by doubly aromatic ligands. Zhang N; Wang C; Wu Q; Lan J; Chai Z; Shi W Phys Chem Chem Phys; 2022 Mar; 24(10):5921-5928. PubMed ID: 35195640 [TBL] [Abstract][Full Text] [Related]
51. Metal complexes containing allenylidene and higher cumulenylidene ligands: a theoretical perspective. Coletti C; Marrone A; Re N Acc Chem Res; 2012 Feb; 45(2):139-49. PubMed ID: 21899273 [TBL] [Abstract][Full Text] [Related]
52. Relativistic density functional theory study of dioxoactinide(VI) and -(V) complexation with alaskaphyrin and related Schiff-base macrocyclic ligands. Shamov GA; Schreckenbach G J Phys Chem A; 2006 Aug; 110(30):9486-99. PubMed ID: 16869700 [TBL] [Abstract][Full Text] [Related]
53. Emergence of the structure-directing role of f-orbital overlap-driven covalency. Lu E; Sajjad S; Berryman VEJ; Wooles AJ; Kaltsoyannis N; Liddle ST Nat Commun; 2019 Feb; 10(1):634. PubMed ID: 30733443 [TBL] [Abstract][Full Text] [Related]
54. Insight into the structure and mechanism of nickel-containing superoxide dismutase derived from peptide-based mimics. Shearer J Acc Chem Res; 2014 Aug; 47(8):2332-41. PubMed ID: 24825124 [TBL] [Abstract][Full Text] [Related]
55. Recent developments in highly basic N-heterocyclic iminato ligands in actinide chemistry. Revathi S; Raja P; Saha S; Eisen MS; Ghatak T Chem Commun (Camb); 2021 Jun; 57(45):5483-5502. PubMed ID: 34008633 [TBL] [Abstract][Full Text] [Related]
56. Gas-phase structure, bonding, and fragmentation chemistry of the An (IV)-TMPDCAM complexes studied using mass spectrometry and theoretical calculation (An = Th and U). Xiong Z; Hu J; Chen X Rapid Commun Mass Spectrom; 2021 Oct; 35(19):e9168. PubMed ID: 34288173 [TBL] [Abstract][Full Text] [Related]
57. Importance of energy level matching for bonding in Th(3+)-Am(3+) actinide metallocene amidinates, (C(5)Me(5))(2)[(i)PrNC(Me)N(i)Pr]An. Walensky JR; Martin RL; Ziller JW; Evans WJ Inorg Chem; 2010 Nov; 49(21):10007-12. PubMed ID: 20883019 [TBL] [Abstract][Full Text] [Related]
58. Description of the ground-state covalencies of the bis(dithiolato) transition-metal complexes from X-ray absorption spectroscopy and time-dependent density-functional calculations. Ray K; Debeer George S; Solomon EI; Wieghardt K; Neese F Chemistry; 2007; 13(10):2783-97. PubMed ID: 17290468 [TBL] [Abstract][Full Text] [Related]
59. Theoretical studies on the oxidation states and electronic structures of actinide-borides: AnB Hu SX; Chen M; Ao B Phys Chem Chem Phys; 2018 Sep; 20(37):23856-23863. PubMed ID: 29999053 [TBL] [Abstract][Full Text] [Related]
60. Spectroscopic and Electrochemical Investigation of Uranium and Neptunium in Chloride Room-Temperature Ionic Liquids. Unger AJ; Jensen MP Inorg Chem; 2023 Apr; 62(13):5186-5199. PubMed ID: 36951268 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]