These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31298066)

  • 1. 4D printing smart biosystems for nanomedicine.
    Zhu W; Webster TJ; Zhang LG
    Nanomedicine (Lond); 2019 Jul; 14(13):1643-1645. PubMed ID: 31298066
    [No Abstract]   [Full Text] [Related]  

  • 2. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.
    Miao S; Zhu W; Castro NJ; Leng J; Zhang LG
    Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration.
    O'Brien CM; Holmes B; Faucett S; Zhang LG
    Tissue Eng Part B Rev; 2015 Feb; 21(1):103-14. PubMed ID: 25084122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices.
    Wang Y; Cui H; Esworthy T; Mei D; Wang Y; Zhang LG
    Adv Mater; 2022 May; 34(20):e2109198. PubMed ID: 34951494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.
    Miao S; Zhu W; Castro NJ; Nowicki M; Zhou X; Cui H; Fisher JP; Zhang LG
    Sci Rep; 2016 Jun; 6():27226. PubMed ID: 27251982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomaterial Highlights of 2019-Biofabrication, Tissue Engineering, Nanomedicine, and More.
    Bayindir-Buchhalter I; Hu E; Göbel U
    Adv Healthc Mater; 2020 Jan; 9(1):e1901691. PubMed ID: 31913585
    [No Abstract]   [Full Text] [Related]  

  • 7. 3D printing process of oxidized nanocellulose and gelatin scaffold.
    Xu X; Zhou J; Jiang Y; Zhang Q; Shi H; Liu D
    J Biomater Sci Polym Ed; 2018 Aug; 29(12):1498-1513. PubMed ID: 29716440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting in cardiovascular nanomedicine.
    Brazhkina O; Davis ME
    Nanomedicine (Lond); 2021 Jul; 16(16):1347-1350. PubMed ID: 34080438
    [No Abstract]   [Full Text] [Related]  

  • 9. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Materials for Osteochondral Tissue Engineering.
    Iulian A; Dan L; Camelia T; Claudia M; Sebastian G
    Adv Exp Med Biol; 2018; 1058():31-52. PubMed ID: 29691816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application.
    Zhao W; Yue C; Liu L; Liu Y; Leng J
    Adv Healthc Mater; 2023 Jun; 12(16):e2201975. PubMed ID: 36520058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotechnology: 21st century revolution in restorative healthcare.
    Venugopal JR; Ramakrishna S
    Nanomedicine (Lond); 2016 Jun; 11(12):1511-3. PubMed ID: 27199155
    [No Abstract]   [Full Text] [Related]  

  • 13. Urologic tissue engineering in pediatrics: from nanostructures to bladders.
    Roth CC
    Pediatr Res; 2010 May; 67(5):509-13. PubMed ID: 20075760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocellulose and its Composites for Biomedical Applications.
    Dumanli AG
    Curr Med Chem; 2017; 24(5):512-528. PubMed ID: 27758719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D Bioprinting: Technological Advances in Biofabrication.
    Yang GH; Yeo M; Koo YW; Kim GH
    Macromol Biosci; 2019 May; 19(5):e1800441. PubMed ID: 30821919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How can 3D printing be a powerful tool in nanomedicine?
    Zhu W; Webster TJ; Zhang LG
    Nanomedicine (Lond); 2018 Feb; 13(3):251-253. PubMed ID: 29338559
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanical properties and degradation of drug eluted bioresorbable vascular scaffolds prepared by three-dimensional printing technology.
    Zhang Y; Zhao J; Yang G; Zhou Y; Gao W; Wu G; Li X; Mao C; Sheng T; Zhou M
    J Biomater Sci Polym Ed; 2019 May; 30(7):547-560. PubMed ID: 30897033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D imprinted substrates and 3D electrospun scaffolds revolutionize biomedicine.
    Biggs M; Pandit A; Zeugolis DI
    Nanomedicine (Lond); 2016 May; 11(9):989-92. PubMed ID: 27074111
    [No Abstract]   [Full Text] [Related]  

  • 19. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells.
    Domingos M; Gloria A; Coelho J; Bartolo P; Ciurana J
    Proc Inst Mech Eng H; 2017 Jun; 231(6):555-564. PubMed ID: 28056713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.