BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3129826)

  • 1. Endothelium-dependent contractions to calcium ionophore A23187, arachidonic acid, and acetylcholine in canine basilar arteries.
    Katusic ZS; Shepherd JT; Vanhoutte PM
    Stroke; 1988 Apr; 19(4):476-9. PubMed ID: 3129826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelium-dependent relaxation of canine basilar arteries. Part 1: Difference between acetylcholine- and A23187-induced relaxation and involvement of lipoxygenase metabolite(s).
    Kanamaru K; Waga S; Kojima T; Fujimoto K; Itoh H
    Stroke; 1987; 18(5):932-7. PubMed ID: 3114918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of superoxide anions in the mediation of endothelium-dependent contractions.
    Cosentino F; Sill JC; Katusić ZS
    Hypertension; 1994 Feb; 23(2):229-35. PubMed ID: 8307634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Endothelium-derived relaxation of canine uterine artery and arachidonic acid metabolism].
    Matsumoto T; Kanamaru K; Yanou K; Yanase H; Itou M; Sugiyama Y
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Oct; 39(10):1784-90. PubMed ID: 3123576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anoxic contractions in isolated canine cerebral arteries: contribution of endothelium-derived factors, metabolites of arachidonic acid, and calcium entry.
    Katusic ZS; Vanhoutte PM
    J Cardiovasc Pharmacol; 1986; 8 Suppl 8():S97-101. PubMed ID: 2433536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possible role of endothelial thromboxane A2 in the resting tone and contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries.
    Shirahase H; Usui H; Kurahashi K; Fujiwara M; Fukui K
    J Cardiovasc Pharmacol; 1987 Nov; 10(5):517-22. PubMed ID: 2447399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of inhibitors of arachidonic acid metabolism and calcium entry on responses to acetylcholine, potassium and norepinephrine in the isolated canine saphenous vein.
    Rimele TJ; Vanhoutte PM
    J Pharmacol Exp Ther; 1983 Jun; 225(3):720-8. PubMed ID: 6408242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide and effects of cationic polypeptides in canine cerebral arteries.
    Kinoshita H; Katusic ZS
    J Cereb Blood Flow Metab; 1997 Apr; 17(4):470-80. PubMed ID: 9143230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of perindoprilat on endothelium-dependent relaxations and contractions in isolated blood vessels.
    Kerth PA; Vanhoutte PM
    Am J Hypertens; 1991 Mar; 4(3 Pt 2):226S-234S. PubMed ID: 2043312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelium-dependent responses in autogenous femoral veins grafted into the arterial circulation of the dog.
    Miller VM; Reigel MM; Hollier LH; Vanhoutte PM
    J Clin Invest; 1987 Nov; 80(5):1350-7. PubMed ID: 2890656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exogenous tetrahydrobiopterin causes endothelium-dependent contractions in isolated canine basilar artery.
    Kinoshita H; Katusic ZS
    Am J Physiol; 1996 Aug; 271(2 Pt 2):H738-43. PubMed ID: 8770117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of endothelium-derived metabolites of arachidonic acid in enhanced pulmonary artery contractions in female rabbits.
    Pfister SL; Campbell WB
    Hypertension; 1996 Jan; 27(1):43-8. PubMed ID: 8591886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelium-dependent contraction produced by acetylcholine and relaxation produced by histamine in monkey basilar arteries.
    Usui H; Kurahashi K; Shirahase H; Jino H; Fujiwara M
    Life Sci; 1993; 52(4):377-87. PubMed ID: 8421436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ouabain inhibits endothelium-dependent relaxations to arachidonic acid in canine coronary arteries.
    Rubanyi GM; Vanhoutte PM
    J Pharmacol Exp Ther; 1985 Oct; 235(1):81-6. PubMed ID: 3930700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelium-dependent relaxation of human basilar arteries.
    Kanamaru K; Waga S; Fujimoto K; Itoh H; Kubo Y
    Stroke; 1989 Sep; 20(9):1208-11. PubMed ID: 2505408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide anion is an endothelium-derived contracting factor.
    Katusic ZS; Vanhoutte PM
    Am J Physiol; 1989 Jul; 257(1 Pt 2):H33-7. PubMed ID: 2546450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A possible role of thromboxane A2 in endothelium in maintaining resting tone and producing contractile response to acetylcholine and arachidonic acid in canine cerebral arteries.
    Shirahase H; Fujiwara M; Usui H; Kurahashi K
    Blood Vessels; 1987; 24(3):117-9. PubMed ID: 3109527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetylcholine-induced contractions in isolated rabbit pulmonary arteries: role of thromboxane A2.
    Altiere RJ; Kiritsy-Roy JA; Catravas JD
    J Pharmacol Exp Ther; 1986 Feb; 236(2):535-41. PubMed ID: 3080588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelium-dependent contractions to oxygen-derived free radicals in the canine basilar artery.
    Katusić ZS; Schugel J; Cosentino F; Vanhoutte PM
    Am J Physiol; 1993 Mar; 264(3 Pt 2):H859-64. PubMed ID: 8456988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of tetrahydrobiopterin biosynthesis impairs endothelium-dependent relaxations in canine basilar artery.
    Kinoshita H; Milstien S; Wambi C; Katusic ZS
    Am J Physiol; 1997 Aug; 273(2 Pt 2):H718-24. PubMed ID: 9277488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.