These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31298462)

  • 1. Reshaping of Metal Nanoparticles Under Reaction Conditions.
    Zhu B; Meng J; Yuan W; Zhang X; Yang H; Wang Y; Gao Y
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2171-2180. PubMed ID: 31298462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reshaping Dynamics of Gold Nanoparticles under H
    Chmielewski A; Meng J; Zhu B; Gao Y; Guesmi H; Prunier H; Alloyeau D; Wang G; Louis C; Delannoy L; Afanasiev P; Ricolleau C; Nelayah J
    ACS Nano; 2019 Feb; 13(2):2024-2033. PubMed ID: 30620561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of Supported Metal Nanoparticles in Reaction Conditions.
    Duan M; Yu J; Meng J; Zhu B; Wang Y; Gao Y
    Angew Chem Int Ed Engl; 2018 May; 57(22):6464-6469. PubMed ID: 29637673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Active Sites In Situ Formed in Metal Nanoparticle Reshaping under Reaction Conditions.
    Li XY; Ou P; Duan X; Ying L; Meng J; Zhu B; Gao Y
    JACS Au; 2024 May; 4(5):1892-1900. PubMed ID: 38818067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure reconstruction of metal/alloy in reaction conditions: a volcano curve?
    Meng J; Zhu B; Gao Y
    Faraday Discuss; 2021 May; 229():62-74. PubMed ID: 33634798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with in Situ TEM and IR.
    Avanesian T; Dai S; Kale MJ; Graham GW; Pan X; Christopher P
    J Am Chem Soc; 2017 Mar; 139(12):4551-4558. PubMed ID: 28263592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Nanoparticle Transformations Captured by an Electron Microscope.
    Albrecht W; Van Aert S; Bals S
    Acc Chem Res; 2021 Mar; 54(5):1189-1199. PubMed ID: 33566587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the morphology of Pt nanoparticles for the optimal catalytic activity towards CO oxidation.
    Duan X; Li XY; Zhu B; Gao Y
    Nanoscale; 2022 Dec; 14(47):17754-17760. PubMed ID: 36422007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology evolution of fcc Ru nanoparticles under hydrogen atmosphere.
    Liu L; Yu M; Hou B; Wang Q; Zhu B; Jia L; Li D
    Nanoscale; 2019 Apr; 11(16):8037-8046. PubMed ID: 30968086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Encapsulation of Supported Metallic Iridium Nanoparticles: An
    Liu P; Klyushin A; Chandramathy Surendran P; Fedorov A; Xie W; Zeng C; Huang X
    ACS Nano; 2023 Dec; 17(23):24395-24403. PubMed ID: 38047675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallic nanocatalysis: an accelerating seamless integration with nanotechnology.
    Dai Y; Wang Y; Liu B; Yang Y
    Small; 2015 Jan; 11(3):268-89. PubMed ID: 25363149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale atomistic simulation of metal nanoparticles under working conditions.
    Du J; Meng J; Li XY; Zhu B; Gao Y
    Nanoscale Adv; 2019 Jul; 1(7):2478-2484. PubMed ID: 36132725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shape, electronic structure and steric effects of organometallic nanocatalysts: relevant tools to improve the synergy between theory and experiment.
    Cusinato L; Del Rosal I; Poteau R
    Dalton Trans; 2017 Jan; 46(2):378-395. PubMed ID: 27934982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size.
    Zhang W; Kalive M; Capco DG; Chen Y
    Nanotechnology; 2010 Sep; 21(35):355103. PubMed ID: 20693617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal description of heating-induced reshaping preference of core-shell bimetallic nanoparticles.
    Zhao Z; Xu H; Gao Y; Cheng D
    Nanoscale; 2019 Jan; 11(3):1386-1395. PubMed ID: 30604829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-field theory-based analysis of the adsorption properties of ruthenium nanoparticles.
    Del Rosal I; Mercy M; Gerber IC; Poteau R
    ACS Nano; 2013 Nov; 7(11):9823-35. PubMed ID: 24083468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal nanoparticle catalysts beginning to shape-up.
    Roldan Cuenya B
    Acc Chem Res; 2013 Aug; 46(8):1682-91. PubMed ID: 23252675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.