BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 31298520)

  • 1. Decoupling the Cumulative Contributions of Capacity Fade in Ethereal-Based Li-O
    Karkera G; Prakash AS
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27870-27881. PubMed ID: 31298520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries.
    McCloskey BD; Garcia JM; Luntz AC
    J Phys Chem Lett; 2014 Apr; 5(7):1230-5. PubMed ID: 26274476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries.
    McCloskey BD; Valery A; Luntz AC; Gowda SR; Wallraff GM; Garcia JM; Mori T; Krupp LE
    J Phys Chem Lett; 2013 Sep; 4(17):2989-93. PubMed ID: 26706312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free-Standing Thin Webs of Activated Carbon Nanofibers by Electrospinning for Rechargeable Li-O2 Batteries.
    Nie H; Xu C; Zhou W; Wu B; Li X; Liu T; Zhang H
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1937-42. PubMed ID: 26691321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Changes in Charge Transfer Resistances during Cycling of Aprotic Li-O
    Morimoto K; Kusumoto T; Nishioka K; Kamiya K; Mukouyama Y; Nakanishi S
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42803-42810. PubMed ID: 32808758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seed Layer Formation on Carbon Electrodes to Control Li
    Oh G; Seo S; Kim W; Cho Y; Kwon H; Kim S; Noh S; Kwon E; Oh Y; Song J; Lee J; Ryu K
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13200-13211. PubMed ID: 33710866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clear Representation of Surface Pathway Reactions at Ag Nanowire Cathodes in All-Solid Li-O
    Wang H; Zhao N; Bi Z; Gao S; Dai Q; Yang T; Wang J; Jia Z; Peng Z; Huang J; Wan Y; Guo X
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39157-39164. PubMed ID: 34378380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries.
    Beyer H; Meini S; Tsiouvaras N; Piana M; Gasteiger HA
    Phys Chem Chem Phys; 2013 Jul; 15(26):11025-37. PubMed ID: 23715054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limitations in Rechargeability of Li-O2 Batteries and Possible Origins.
    McCloskey BD; Bethune DS; Shelby RM; Mori T; Scheffler R; Speidel A; Sherwood M; Luntz AC
    J Phys Chem Lett; 2012 Oct; 3(20):3043-7. PubMed ID: 26292247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li-Air Batteries.
    Kavalsky L; Mukherjee S; Singh CV
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):499-510. PubMed ID: 30521304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable Electrochemical Fabrication of KO
    Yu W; Wang H; Qin L; Hu J; Liu L; Li B; Zhai D; Kang F
    ACS Appl Mater Interfaces; 2018 May; 10(20):17156-17166. PubMed ID: 29719955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominant Decomposition Pathways for Ethereal Solvents in Li-O2 Batteries.
    GarcĂ­a JM; Horn HW; Rice JE
    J Phys Chem Lett; 2015 May; 6(10):1795-9. PubMed ID: 26263250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensive Study on the Catalytical Behavior of N-Methylphenothiazine as a Soluble Mediator to Oxidize the Li
    Feng N; Mu X; Zhang X; He P; Zhou H
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3733-3739. PubMed ID: 28079362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viable Synthesis of Porous MnCo
    Karkera G; Chandrappa SG; Prakash AS
    Chemistry; 2018 Nov; 24(65):17303-17310. PubMed ID: 30176089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The carbon electrode in nonaqueous Li-O2 cells.
    Ottakam Thotiyl MM; Freunberger SA; Peng Z; Bruce PG
    J Am Chem Soc; 2013 Jan; 135(1):494-500. PubMed ID: 23190204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the Promotion Effects of a Soluble Cobaltocene Catalyst with Respect to Li-O
    Qian Z; Li X; Sun B; Du L; Wang Y; Zuo P; Yin G; Zhang J; Sun B; Wang G
    J Phys Chem Lett; 2020 Sep; 11(17):7028-7034. PubMed ID: 32787326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Li-O
    Wang G; Tu F; Xie J; Du G; Zhang S; Cao G; Zhao X
    Adv Sci (Weinh); 2016 Oct; 3(10):1500339. PubMed ID: 27840792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of Li2O2 growth and its effect on kinetics of Li-O2 batteries.
    Xia C; Waletzko M; Chen L; Peppler K; Klar PJ; Janek J
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12083-92. PubMed ID: 25006701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.