These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains. Kosalková K; Domínguez-Santos R; Coton M; Coton E; García-Estrada C; Liras P; Martín JF Appl Microbiol Biotechnol; 2015 Sep; 99(18):7601-12. PubMed ID: 25998659 [TBL] [Abstract][Full Text] [Related]
10. Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses. Caron T; Piver ML; Péron AC; Lieben P; Lavigne R; Brunel S; Roueyre D; Place M; Bonnarme P; Giraud T; Branca A; Landaud S; Chassard C Int J Food Microbiol; 2021 Sep; 354():109174. PubMed ID: 34103155 [TBL] [Abstract][Full Text] [Related]
11. Genetic diversity and population structure of Penicillium roqueforti isolates from Turkish blue cheeses. Kirtil HE; Orakci A; Arici M; Metin B Int J Food Microbiol; 2024 Aug; 421():110801. PubMed ID: 38924974 [TBL] [Abstract][Full Text] [Related]
12. Secondary Metabolites Produced by the Blue-Cheese Ripening Mold Chávez R; Vaca I; García-Estrada C J Fungi (Basel); 2023 Apr; 9(4):. PubMed ID: 37108913 [TBL] [Abstract][Full Text] [Related]
13. Roquefortine C occurrence in blue cheese. Finoli C; Vecchio A; Galli A; Dragoni I J Food Prot; 2001 Feb; 64(2):246-51. PubMed ID: 11271775 [TBL] [Abstract][Full Text] [Related]
14. Metabolomics analyses of the combined effects of lactic acid bacteria and Penicillium camemberti on the generation of volatile compounds in model mold-surface-ripened cheeses. Suzuki-Iwashima A; Matsuura H; Iwasawa A; Shiota M J Biosci Bioeng; 2020 Mar; 129(3):333-347. PubMed ID: 31611057 [TBL] [Abstract][Full Text] [Related]
15. High-pressure processing decelerates lipolysis and formation of volatile compounds in ovine milk blue-veined cheese. Calzada J; Del Olmo A; Picon A; Gaya P; Nuñez M J Dairy Sci; 2013; 96(12):7500-10. PubMed ID: 24140328 [TBL] [Abstract][Full Text] [Related]
16. Influence of intraspecific variability and abiotic factors on mycotoxin production in Penicillium roqueforti. Fontaine K; Hymery N; Lacroix MZ; Puel S; Puel O; Rigalma K; Gaydou V; Coton E; Mounier J Int J Food Microbiol; 2015 Dec; 215():187-93. PubMed ID: 26320771 [TBL] [Abstract][Full Text] [Related]
17. Examination of the taxonomic position of Penicillium strains used in blue cheese production based on the partial sequence of β-tubulin. Ogawa Y; Hirose D; Akiyama A; Ichinoe M Shokuhin Eiseigaku Zasshi; 2014; 55(3):157-61. PubMed ID: 24990763 [TBL] [Abstract][Full Text] [Related]
18. Differential Off-line LC-NMR (DOLC-NMR) Metabolomics To Monitor Tyrosine-Induced Metabolome Alterations in Saccharomyces cerevisiae. Hammerl R; Frank O; Hofmann T J Agric Food Chem; 2017 Apr; 65(15):3230-3241. PubMed ID: 28381091 [TBL] [Abstract][Full Text] [Related]
19. Silencing of a second dimethylallyltryptophan synthase of Penicillium roqueforti reveals a novel clavine alkaloid gene cluster. Fernández-Bodega Á; Álvarez-Álvarez R; Liras P; Martín JF Appl Microbiol Biotechnol; 2017 Aug; 101(15):6111-6121. PubMed ID: 28620689 [TBL] [Abstract][Full Text] [Related]