These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 3129854)

  • 1. [The occurrence and properties of Selenomonas ruminantium bacteria in calves during the time of milk feedings].
    Kmet V; Koniarová I; Stachová M
    Vet Med (Praha); 1988 Mar; 33(3):129-33. PubMed ID: 3129854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rumen microbial changes in calves fed on alpha amylase diet.
    Kmet V; Jonecová Z; Tirco M; Koniarová I; Kirchnerová K; Ceresnáková Z
    Arch Tierernahr; 1988 Jan; 38(1):77-9. PubMed ID: 3259418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference to Selenomonas ruminantium having the ability to reduce nitrate and nitrite.
    Asanuma N; Yokoyama S; Hino T
    Anim Sci J; 2015 Apr; 86(4):378-84. PubMed ID: 25439583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Survey of urease activity in ruminal bacteria isolated from domestic and wild ruminants.
    Lauková A; Koniarová I
    Microbios; 1995; 84(338):7-11. PubMed ID: 8569526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of a nickel-containing urease from the rumen anaerobe Selenomonas ruminantium.
    Hausinger RP
    J Biol Chem; 1986 Jun; 261(17):7866-70. PubMed ID: 3711113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of bacterial antigens in calves inoculated orally with ruminal Bacteroides succinogenes and Selenomonas ruminantium.
    Sato S; Ogimoto K; Nakai Y
    Nihon Juigaku Zasshi; 1990 Aug; 52(4):711-7. PubMed ID: 2202844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of enzymatic activity development in the adherent rumen microflora.
    Kmet V; Boda K; Javorský P; Gibalová R
    Arch Tierernahr; 1986 Jul; 36(7):621-8. PubMed ID: 3533011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of N6-methyladenine in GATC sequences of Selenomonas ruminantium.
    Pristas P; Molnarova V; Javorsky P
    J Basic Microbiol; 1998; 38(4):283-7. PubMed ID: 9791949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Lactic acid production and urease activity in strains of Enterococcus faecium found in the rumen and their genetic stability].
    Lauková A; Kuncová M
    Vet Med (Praha); 1991 Jun; 36(6):335-40. PubMed ID: 1807029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Occurrence of streptococci resistant to antibiotics in the rumen of calves].
    Jonecová Z; Mareková M; Kmet V
    Vet Med (Praha); 1993; 38(2):75-81. PubMed ID: 8488631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre- and postweaning attributes in faunated and ciliate-free calves fed calf starter with or without fish meal.
    Sahoo A; Kamra DN; Pathak NN
    J Dairy Sci; 2005 Jun; 88(6):2027-36. PubMed ID: 15905433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dynamics of protozoan counts in the rumen of calves during a period of milk feeding].
    Klapácová K; Klapác S
    Vet Med (Praha); 1991 Jun; 36(6):331-4. PubMed ID: 1807028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactic acid-utilizing bacteria in ruminal fluid of a steer adapted from hay feeding to a high-grain ration.
    Huber TL; Cooley JH; Goetsch DD; Das NK
    Am J Vet Res; 1976 May; 37(5):611-3. PubMed ID: 1275348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural growth, rumen development, and metabolic and immune responses of Holstein male calves fed milk through step-down and conventional methods.
    Khan MA; Lee HJ; Lee WS; Kim HS; Ki KS; Hur TY; Suh GH; Kang SJ; Choi YJ
    J Dairy Sci; 2007 Jul; 90(7):3376-87. PubMed ID: 17582123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of non-starch-polysaccharide-degrading enzymes as feed additive on the rumen bacterial population in non-lactating cows quantified by real-time PCR.
    Zeitz JO; Guertler P; Pfaffl MW; Eisenreich R; Wiedemann S; Schwarz FJ
    J Anim Physiol Anim Nutr (Berl); 2013 Dec; 97(6):1104-13. PubMed ID: 23216628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The bacterial flora of the hairy skin and the rumen contents of veal calves. A prospective study].
    Visser IJ; Bijker PG
    Tijdschr Diergeneeskd; 1988 Dec; 113(24):1356-61. PubMed ID: 3212761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid changes in key ruminal microbial populations during the induction of and recovery from diet-induced milk fat depression in dairy cows.
    Rico DE; Preston SH; Risser JM; Harvatine KJ
    Br J Nutr; 2015 Aug; 114(3):358-67. PubMed ID: 26123320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ISOLATION, ENUMERATION, AND CHARACTERISTICS OF PROTEOLYTIC RUMINAL BACTERIA.
    FULGHUM RS; MOORE WE
    J Bacteriol; 1963 Apr; 85(4):808-15. PubMed ID: 14044947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ethanol and methanol on growth of ruminal bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens.
    Patterson JA; Ricke SC
    J Environ Sci Health B; 2015; 50(1):62-7. PubMed ID: 25421629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of phytase in Selenomonas ruminantium and Mitsuokella multiacidus by transmission electron microscopy.
    D'Silva CG; Bae HD; Yanke LJ; Cheng KJ; Selinger LB
    Can J Microbiol; 2000 Apr; 46(4):391-5. PubMed ID: 10779878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.