BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31298779)

  • 1. Cyclic Cell-Penetrating Peptides with Single Hydrophobic Groups.
    Song J; Qian Z; Sahni A; Chen K; Pei D
    Chembiochem; 2019 Aug; 20(16):2085-2088. PubMed ID: 31298779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of a Cyclic Cell-Penetrating Peptide with Improved Endosomal Escape and Cytosolic Delivery Efficiency.
    Buyanova M; Sahni A; Yang R; Sarkar A; Salim H; Pei D
    Mol Pharm; 2022 May; 19(5):1378-1388. PubMed ID: 35405068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Cyclic, Cell Penetrating Peptide Compatible with In Vitro Selection Strategies.
    Abrigo NA; Dods KK; Makovsky CA; Lohan S; Mitra K; Newcomb KM; Le A; Hartman MCT
    ACS Chem Biol; 2023 Apr; 18(4):746-755. PubMed ID: 36920103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Hydrophobic Cell-Penetrating Stapled Peptides as Drug Carriers.
    Tsuchiya K; Horikoshi K; Fujita M; Hirano M; Miyamoto M; Yokoo H; Demizu Y
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Short Hydrophobic Cell-Penetrating Peptides for Cytosolic Peptide Delivery by Rational Design.
    Schmidt S; Adjobo-Hermans MJ; Kohze R; Enderle T; Brock R; Milletti F
    Bioconjug Chem; 2017 Feb; 28(2):382-389. PubMed ID: 27966361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane permeation of arginine-rich cell-penetrating peptides independent of transmembrane potential as a function of lipid composition and membrane fluidity.
    Wallbrecher R; Ackels T; Olea RA; Klein MJ; Caillon L; Schiller J; Bovée-Geurts PH; van Kuppevelt TH; Ulrich AS; Spehr M; Adjobo-Hermans MJW; Brock R
    J Control Release; 2017 Jun; 256():68-78. PubMed ID: 28411183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides.
    Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID
    Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rational design of cell-penetrating peptides for application in delivery systems.
    Kang Z; Ding G; Meng Z; Meng Q
    Peptides; 2019 Nov; 121():170149. PubMed ID: 31491454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of amphiphilic α-helical cell-penetrating peptides with heparan sulfate.
    Yang J; Tsutsumi H; Furuta T; Sakurai M; Mihara H
    Org Biomol Chem; 2014 Jul; 12(26):4673-81. PubMed ID: 24867193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular Delivery via Noncharged Sequence-Defined Cell-Penetrating Oligomers.
    Phan NN; Li C; Alabi CA
    Bioconjug Chem; 2018 Aug; 29(8):2628-2635. PubMed ID: 29953207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular Uptake of IgG Using Collagen-Like Cell-Penetrating Peptides.
    Masuda R; Yamamoto K; Koide T
    Biol Pharm Bull; 2016; 39(1):130-4. PubMed ID: 26725435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of cell-penetrating peptide fragments by disulfide formation.
    Tooyserkani R; Lipiński W; Willemsen B; Löwik DWPM
    Amino Acids; 2020 Aug; 52(8):1161-1168. PubMed ID: 32737661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobicity is a key determinant in the activity of arginine-rich cell penetrating peptides.
    Allen J; Pellois JP
    Sci Rep; 2022 Sep; 12(1):15981. PubMed ID: 36156072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the attachment of a penetration accelerating sequence and the influence of hydrophobicity on octaarginine-mediated intracellular delivery.
    Takayama K; Hirose H; Tanaka G; Pujals S; Katayama S; Nakase I; Futaki S
    Mol Pharm; 2012 May; 9(5):1222-30. PubMed ID: 22486588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct transduction modes of arginine-rich cell-penetrating peptides for cargo delivery into tumor cells.
    Ma DX; Shi NQ; Qi XR
    Int J Pharm; 2011 Oct; 419(1-2):200-8. PubMed ID: 21843610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide internalization enabled by folding: triple helical cell-penetrating peptides.
    Shinde A; Feher KM; Hu C; Slowinska K
    J Pept Sci; 2015 Feb; 21(2):77-84. PubMed ID: 25524829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of N-terminal and C-terminal modification on cytotoxicity and cellular uptake of amphiphilic cell penetrating peptides.
    Soleymani-Goloujeh M; Nokhodchi A; Niazi M; Najafi-Hajivar S; Shahbazi-Mojarrad J; Zarghami N; Zakeri-Milani P; Mohammadi A; Karimi M; Valizadeh H
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):91-103. PubMed ID: 29258339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of Cell-Penetrating Peptides with Ionpair-π Interactions and Fluorophiles.
    Chuard N; Fujisawa K; Morelli P; Saarbach J; Winssinger N; Metrangolo P; Resnati G; Sakai N; Matile S
    J Am Chem Soc; 2016 Sep; 138(35):11264-71. PubMed ID: 27568814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taming Cell Penetrating Peptides: Never Too Old To Teach Old Dogs New Tricks.
    Zhang Q; Gao H; He Q
    Mol Pharm; 2015 Sep; 12(9):3105-18. PubMed ID: 26237247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.