These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31298841)

  • 1. Automated Design of Diverse Stand-Alone Riboswitches.
    Wu MJ; Andreasson JOL; Kladwang W; Greenleaf W; Das R
    ACS Synth Biol; 2019 Aug; 8(8):1838-1846. PubMed ID: 31298841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices.
    Trausch JJ; Batey RT
    Methods Enzymol; 2015; 550():41-71. PubMed ID: 25605380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA aptamers as genetic control devices: the potential of riboswitches as synthetic elements for regulating gene expression.
    Berens C; Groher F; Suess B
    Biotechnol J; 2015 Feb; 10(2):246-57. PubMed ID: 25676052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating riboswitch optimality.
    Wayment-Steele H; Wu M; Gotrik M; Das R
    Methods Enzymol; 2019; 623():417-450. PubMed ID: 31239056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of synthetic riboswitch in cell-free protein expression systems.
    Chushak Y; Harbaugh S; Zimlich K; Alfred B; Chávez J; Kelley-Loughnane N
    RNA Biol; 2021 Nov; 18(11):1727-1738. PubMed ID: 33427029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Riboswitch Signal Amplification by Controlling Plasmid Copy Number.
    Dwidar M; Yokobayashi Y
    ACS Synth Biol; 2019 Feb; 8(2):245-250. PubMed ID: 30682247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated physics-based design of synthetic riboswitches from diverse RNA aptamers.
    Espah Borujeni A; Mishler DM; Wang J; Huso W; Salis HM
    Nucleic Acids Res; 2016 Jan; 44(1):1-13. PubMed ID: 26621913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unexpected versatility in bacterial riboswitches.
    Mellin JR; Cossart P
    Trends Genet; 2015 Mar; 31(3):150-6. PubMed ID: 25708284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating and amplifying signal from riboswitch biosensors.
    Goodson MS; Harbaugh SV; Chushak YG; Kelley-Loughnane N
    Methods Enzymol; 2015; 550():73-91. PubMed ID: 25605381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of orthogonally selective bacterial riboswitches by targeted mutagenesis and in vivo screening.
    Vincent HA; Robinson CJ; Wu MC; Dixon N; Micklefield J
    Methods Mol Biol; 2014; 1111():107-29. PubMed ID: 24549615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators.
    Wittmann A; Suess B
    FEBS Lett; 2012 Jul; 586(15):2076-83. PubMed ID: 22710175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications and limitations of regulatory RNA elements in synthetic biology and biotechnology.
    Nshogozabahizi JC; Aubrey KL; Ross JA; Thakor N
    J Appl Microbiol; 2019 Oct; 127(4):968-984. PubMed ID: 30927378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design criteria for synthetic riboswitches acting on transcription.
    Wachsmuth M; Domin G; Lorenz R; Serfling R; Findeiß S; Stadler PF; Mörl M
    RNA Biol; 2015; 12(2):221-31. PubMed ID: 25826571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression.
    Wang X; Fang C; Wang Y; Shi X; Yu F; Xiong J; Chou SH; He J
    Microbiol Spectr; 2023 Feb; 11(1):e0275222. PubMed ID: 36688639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic small RNAs: Current status, challenges, and opportunities.
    Patel S; Panchasara H; Braddick D; Gohil N; Singh V
    J Cell Biochem; 2018 Dec; 119(12):9619-9639. PubMed ID: 30010218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creation of Architecturally Minimal Transcriptionally Activating Riboswitches Responsive to Theophylline Reveals an Unconventional Design Strategy.
    Cui W; Lin Q; Wu Y; Wang X; Zhang Y; Lin X; Zhang L; Liu X; Han L; Zhou Z
    ACS Synth Biol; 2023 Dec; 12(12):3716-3729. PubMed ID: 38052004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and Crystallization of Riboswitches.
    Peselis A; Gao A; Serganov A
    Methods Mol Biol; 2016; 1320():21-36. PubMed ID: 26227035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of transcription regulating riboswitches.
    Findeiß S; Wachsmuth M; Mörl M; Stadler PF
    Methods Enzymol; 2015; 550():1-22. PubMed ID: 25605378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of riboswitches in gene regulation and their potential for algal biotechnology.
    Nguyen GT; Scaife MA; Helliwell KE; Smith AG
    J Phycol; 2016 Jun; 52(3):320-8. PubMed ID: 27037670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic Biology of Small RNAs and Riboswitches.
    Villa JK; Su Y; Contreras LM; Hammond MC
    Microbiol Spectr; 2018 May; 6(3):. PubMed ID: 29932045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.