These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31298850)

  • 1. ωB2PLYP and ωB2GPPLYP: The First Two Double-Hybrid Density Functionals with Long-Range Correction Optimized for Excitation Energies.
    Casanova-Páez M; Dardis MB; Goerigk L
    J Chem Theory Comput; 2019 Sep; 15(9):4735-4744. PubMed ID: 31298850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of local hybrid functionals for TDDFT calculations of electronic excitation energies.
    Maier TM; Bahmann H; Arbuznikov AV; Kaupp M
    J Chem Phys; 2016 Feb; 144(7):074106. PubMed ID: 26896975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of the M11 and M11-L density functionals for calculations of electronic excitation energies by adiabatic time-dependent density functional theory.
    Peverati R; Truhlar DG
    Phys Chem Chem Phys; 2012 Aug; 14(32):11363-70. PubMed ID: 22801459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functional study of multiplicity-changing valence and Rydberg excitations of p-block elements: delta self-consistent field, collinear spin-flip time-dependent density functional theory (DFT), and conventional time-dependent DFT.
    Yang K; Peverati R; Truhlar DG; Valero R
    J Chem Phys; 2011 Jul; 135(4):044118. PubMed ID: 21806101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revised M11 Exchange-Correlation Functional for Electronic Excitation Energies and Ground-State Properties.
    Verma P; Wang Y; Ghosh S; He X; Truhlar DG
    J Phys Chem A; 2019 Apr; 123(13):2966-2990. PubMed ID: 30707029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of recent and high-performance approximate density functionals for time-dependent density functional theory calculations of valence and Rydberg electronic transition energies.
    Isegawa M; Peverati R; Truhlar DG
    J Chem Phys; 2012 Dec; 137(24):244104. PubMed ID: 23277925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Tamm-Dancoff approximation, singlet-singlet, and singlet-triplet excitations with the latest long-range corrected double-hybrid density functionals.
    Casanova-Páez M; Goerigk L
    J Chem Phys; 2020 Aug; 153(6):064106. PubMed ID: 35287444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A long-range-corrected time-dependent density functional theory.
    Tawada Y; Tsuneda T; Yanagisawa S; Yanai T; Hirao K
    J Chem Phys; 2004 May; 120(18):8425-33. PubMed ID: 15267767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme.
    Li SL; Truhlar DG
    J Chem Theory Comput; 2015 Jul; 11(7):3123-30. PubMed ID: 26575749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing time-dependent density functional theory with depopulated molecular orbitals for predicting electronic excitation energies of valence, Rydberg, and charge-transfer states and potential energies near a conical intersection.
    Li SL; Truhlar DG
    J Chem Phys; 2014 Sep; 141(10):104106. PubMed ID: 25217903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the performance of long-range-corrected density functionals for calculating the absorption spectra of silver clusters.
    Rabilloud F
    J Phys Chem A; 2013 May; 117(20):4267-78. PubMed ID: 23638637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Performances of the M06 Family of Density Functionals for Electronic Excitation Energies.
    Jacquemin D; Perpète EA; Ciofini I; Adamo C; Valero R; Zhao Y; Truhlar DG
    J Chem Theory Comput; 2010 Jul; 6(7):2071-85. PubMed ID: 26615935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double Hybrid Density Functionals for the Electronic Excitation Energies of Linear Cyanines.
    Helal W
    J Phys Chem A; 2023 Jan; 127(1):131-141. PubMed ID: 36537875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of atomic excitation energies by time-dependent density functional theory within a modified linear response.
    Hu C; Sugino O; Tateyama Y
    J Phys Condens Matter; 2009 Feb; 21(6):064229. PubMed ID: 21715931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of accurate excitation energies for large organic molecules with double-hybrid density functionals.
    Goerigk L; Moellmann J; Grimme S
    Phys Chem Chem Phys; 2009 Jun; 11(22):4611-20. PubMed ID: 19475182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-Dependent Long-Range-Corrected Double-Hybrid Density Functionals with Spin-Component and Spin-Opposite Scaling: A Comprehensive Analysis of Singlet-Singlet and Singlet-Triplet Excitation Energies.
    Casanova-Páez M; Goerigk L
    J Chem Theory Comput; 2021 Aug; 17(8):5165-5186. PubMed ID: 34291643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved long-range corrected hybrid exchange-correlation functional including a short-range Gaussian attenuation (LCgau-BOP).
    Song JW; Tokura S; Sato T; Watson MA; Hirao K
    J Chem Phys; 2007 Oct; 127(15):154109. PubMed ID: 17949134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing Recent Time-Dependent Double-Hybrid Density Functionals on Doublet-Doublet Excitations.
    Van Dijk J; Casanova-Páez M; Goerigk L
    ACS Phys Chem Au; 2022 Sep; 2(5):407-416. PubMed ID: 36855692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excited-State Properties for Extended Systems: Efficient Hybrid Density Functional Methods.
    Hehn AS; Sertcan B; Belleflamme F; Chulkov SK; Watkins MB; Hutter J
    J Chem Theory Comput; 2022 Jul; 18(7):4186-4202. PubMed ID: 35759470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states.
    Rohrdanz MA; Martins KM; Herbert JM
    J Chem Phys; 2009 Feb; 130(5):054112. PubMed ID: 19206963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.