These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31298883)

  • 1. Finite-Field Approach to Solving the Bethe-Salpeter Equation.
    Nguyen NL; Ma H; Govoni M; Gygi F; Galli G
    Phys Rev Lett; 2019 Jun; 122(23):237402. PubMed ID: 31298883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory.
    Rocca D; Lu D; Galli G
    J Chem Phys; 2010 Oct; 133(16):164109. PubMed ID: 21033777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Koopmans Meets Bethe-Salpeter: Excitonic Optical Spectra without GW.
    Elliott JD; Colonna N; Marsili M; Marzari N; Umari P
    J Chem Theory Comput; 2019 Jun; 15(6):3710-3720. PubMed ID: 30998361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-edge structures from first principles all-electron Bethe-Salpeter equation calculations.
    Olovsson W; Tanaka I; Puschnig P; Ambrosch-Draxl C
    J Phys Condens Matter; 2009 Mar; 21(10):104205. PubMed ID: 21817425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening mixing GW/Bethe-Salpeter approach for triplet states of organic molecules.
    Ziaei V; Bredow T
    J Phys Condens Matter; 2018 Oct; 30(39):395501. PubMed ID: 30124435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical correction to the Bethe-Salpeter equation beyond the plasmon-pole approximation.
    Loos PF; Blase X
    J Chem Phys; 2020 Sep; 153(11):114120. PubMed ID: 32962392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragment-Based Excited-State Calculations Using the GW Approximation and the Bethe-Salpeter Equation.
    Fujita T; Noguchi Y
    J Phys Chem A; 2021 Dec; 125(49):10580-10592. PubMed ID: 34871000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of the Bethe-Salpeter equation in the TURBOMOLE program.
    Krause K; Klopper W
    J Comput Chem; 2017 Mar; 38(6):383-388. PubMed ID: 27925312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides.
    Hung L; Bruneval F; Baishya K; Öğüt S
    J Chem Theory Comput; 2017 May; 13(5):2135-2146. PubMed ID: 28387124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A GW+Bethe-Salpeter calculation on photoabsorption spectra of (CdSe)3 and (CdSe)6 clusters.
    Noguchi Y; Sugino O; Nagaoka M; Ishii S; Ohno K
    J Chem Phys; 2012 Jul; 137(2):024306. PubMed ID: 22803535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient calculation of excitonic effects in solids including approximated quasiparticle energies.
    Matusalem F; Marques M; Guilhon I; Teles LK
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32492665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large scale GW calculations.
    Govoni M; Galli G
    J Chem Theory Comput; 2015 Jun; 11(6):2680-96. PubMed ID: 26575564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bethe-Salpeter equation spectra for very large systems.
    Bradbury NC; Nguyen M; Caram JR; Neuhauser D
    J Chem Phys; 2022 Jul; 157(3):031104. PubMed ID: 35868930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning dielectric screening for the simulation of excited state properties of molecules and materials.
    Dong SS; Govoni M; Galli G
    Chem Sci; 2021 Mar; 12(13):4970-4980. PubMed ID: 34163744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Dielectric Response of Solids: Combining the Bethe-Salpeter Equation with the Random Phase Approximation.
    Søndersted AH; Kuisma M; Svaneborg JK; Svendsen MK; Thygesen KS
    Phys Rev Lett; 2024 Jul; 133(2):026403. PubMed ID: 39073962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pros and cons of the time-dependent hybrid density functional approach for calculating the optical spectra of solids: a case study of CeO
    Sun HY; Li SX; Jiang H
    Phys Chem Chem Phys; 2021 Aug; 23(30):16296-16306. PubMed ID: 34312647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel.
    Rebolini E; Toulouse J
    J Chem Phys; 2016 Mar; 144(9):094107. PubMed ID: 26957157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Finite-Field Approach for GW Calculations beyond the Random Phase Approximation.
    Ma H; Govoni M; Gygi F; Galli G
    J Chem Theory Comput; 2019 Jan; 15(1):154-164. PubMed ID: 30521333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative characterization of exciton from GW+Bethe-Salpeter calculation.
    Hirose D; Noguchi Y; Sugino O
    J Chem Phys; 2017 Jan; 146(4):044303. PubMed ID: 28147542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Bethe-Salpeter Equation Formalism: From Physics to Chemistry.
    Blase X; Duchemin I; Jacquemin D; Loos PF
    J Phys Chem Lett; 2020 Sep; 11(17):7371-7382. PubMed ID: 32787315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.