These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31298910)

  • 1. Electrically Driven Single-Photon Superradiance from Molecular Chains in a Plasmonic Nanocavity.
    Luo Y; Chen G; Zhang Y; Zhang L; Yu Y; Kong F; Tian X; Zhang Y; Shan C; Luo Y; Yang J; Sandoghdar V; Dong Z; Hou JG
    Phys Rev Lett; 2019 Jun; 122(23):233901. PubMed ID: 31298910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically driven single-photon emission from an isolated single molecule.
    Zhang L; Yu YJ; Chen LG; Luo Y; Yang B; Kong FF; Chen G; Zhang Y; Zhang Q; Luo Y; Yang JL; Dong ZC; Hou JG
    Nat Commun; 2017 Sep; 8(1):580. PubMed ID: 28924226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superbunching and Nonclassicality as new Hallmarks of Superradiance.
    Bhatti D; von Zanthier J; Agarwal GS
    Sci Rep; 2015 Dec; 5():17335. PubMed ID: 26632212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of Nanoplasmonic Coupling to Molecular Orbital in Light Emission Induced by Tunneling Electrons.
    Yu A; Li S; Wang H; Chen S; Wu R; Ho W
    Nano Lett; 2018 May; 18(5):3076-3080. PubMed ID: 29660286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing coherent intermolecular dipole-dipole coupling in real space.
    Zhang Y; Luo Y; Zhang Y; Yu YJ; Kuang YM; Zhang L; Meng QS; Luo Y; Yang JL; Dong ZC; Hou JG
    Nature; 2016 Mar; 531(7596):623-7. PubMed ID: 27029277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Single Hydrogen Molecule as an Intensity Chopper in an Electrically Driven Plasmonic Nanocavity.
    Merino P; Rosławska A; Leon CC; Grewal A; Große C; González C; Kuhnke K; Kern K
    Nano Lett; 2019 Jan; 19(1):235-241. PubMed ID: 30558427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semi-continuous metal films.
    Berthelot A; des Francs GC; Varguet H; Margueritat J; Mascart R; Benoit JM; Laverdant J
    Nanotechnology; 2019 Jan; 30(1):015706. PubMed ID: 30370901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-Driven Motion of an Individual Molecule.
    Hung TC; Kiraly B; Strik JH; Khajetoorians AA; Wegner D
    Nano Lett; 2021 Jun; 21(12):5006-5012. PubMed ID: 34061553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement.
    Li GC; Zhang YL; Jiang J; Luo Y; Lei DY
    ACS Nano; 2017 Mar; 11(3):3067-3080. PubMed ID: 28291332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collective Lamb shift in single-photon superradiance.
    Röhlsberger R; Schlage K; Sahoo B; Couet S; Rüffer R
    Science; 2010 Jun; 328(5983):1248-51. PubMed ID: 20466883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bimodal exciton-plasmon light sources controlled by local charge carrier injection.
    Merino P; Rosławska A; Große C; Leon CC; Kuhnke K; Kern K
    Sci Adv; 2018 May; 4(5):eaap8349. PubMed ID: 29806018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically driven photon emission from individual atomic defects in monolayer WS
    Schuler B; Cochrane KA; Kastl C; Barnard ES; Wong E; Borys NJ; Schwartzberg AM; Ogletree DF; de Abajo FJG; Weber-Bargioni A
    Sci Adv; 2020 Sep; 6(38):. PubMed ID: 32938664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetically Tunable Spontaneous Superradiance from Mesoscopic Perovskite Emitter Clusters.
    He R; Rasmita A; Zhou L; Liang L; Cai X; Chen J; Cai H; Gao W; Liu X
    J Phys Chem Lett; 2023 Mar; 14(10):2627-2634. PubMed ID: 36888962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative Energy Transfer Controls the Spontaneous Emission Rate Beyond Field Enhancement Limits.
    ElKabbash M; Miele E; Fumani AK; Wolf MS; Bozzola A; Haber E; Shahbazyan TV; Berezovsky J; De Angelis F; Strangi G
    Phys Rev Lett; 2019 May; 122(20):203901. PubMed ID: 31172774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic polymers unraveled through single particle spectroscopy.
    Slaughter LS; Wang LY; Willingham BA; Olson JM; Swanglap P; Dominguez-Medina S; Link S
    Nanoscale; 2014 Oct; 6(19):11451-61. PubMed ID: 25155111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities.
    Luo Y; Ahmadi ED; Shayan K; Ma Y; Mistry KS; Zhang C; Hone J; Blackburn JL; Strauf S
    Nat Commun; 2017 Nov; 8(1):1413. PubMed ID: 29123125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Many-Body Signatures of Collective Decay in Atomic Chains.
    Masson SJ; Ferrier-Barbut I; Orozco LA; Browaeys A; Asenjo-Garcia A
    Phys Rev Lett; 2020 Dec; 125(26):263601. PubMed ID: 33449783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling collective spontaneous emission with plasmonic waveguides.
    Li Y; Argyropoulos C
    Opt Express; 2016 Nov; 24(23):26696-26708. PubMed ID: 27857400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging and controlling plasmonic interference fields at buried interfaces.
    Lummen TTA; Lamb RJ; Berruto G; LaGrange T; Dal Negro L; García de Abajo FJ; McGrouther D; Barwick B; Carbone F
    Nat Commun; 2016 Oct; 7():13156. PubMed ID: 27725670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabricating two-dimensional plasmonic photonic crystals for the modulation of nanocavity plasmon mode.
    Meng Q; Zhang Y; Cai H; Liao Y; Zhang Y; Wang X; Okamoto T; Dong Z
    Nanoscale; 2016 Dec; 8(45):18855-18859. PubMed ID: 27808322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.