These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31299160)

  • 61. Functionalization of manganite nanoparticles and their interaction with biologically relevant small ligands: picosecond time-resolved FRET studies.
    Giri A; Makhal A; Ghosh B; Raychaudhuri AK; Pal SK
    Nanoscale; 2010 Dec; 2(12):2704-9. PubMed ID: 20936226
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sonosynthesis of gold nanoparticles from a geranium leaf extract.
    Franco-Romano M; Gil ML; Palacios-Santander JM; Delgado-Jaén JJ; Naranjo-Rodríguez I; Hidalgo-Hidalgo de Cisneros JL; Cubillana-Aguilera LM
    Ultrason Sonochem; 2014 Jul; 21(4):1570-7. PubMed ID: 24530142
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Surface effects in water-soluble shell-core hybrid gold nanoparticles in oligonucleotide single strand recognition for sequence-specific bioactivation.
    Zahavy E; Whitesell JK; Fox MA
    Langmuir; 2010 Nov; 26(21):16442-6. PubMed ID: 20677767
    [TBL] [Abstract][Full Text] [Related]  

  • 64. On the Non-Metallicity of 2.2 nm Au
    Zhou M; Zeng C; Song Y; Padelford JW; Wang G; Sfeir MY; Higaki T; Jin R
    Angew Chem Int Ed Engl; 2017 Dec; 56(51):16257-16261. PubMed ID: 29098757
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Covalently linked multimers of gold nanoclusters Au
    Lahtinen T; Hulkko E; Sokołowska K; Tero TR; Saarnio V; Lindgren J; Pettersson M; Häkkinen H; Lehtovaara L
    Nanoscale; 2016 Nov; 8(44):18665-18674. PubMed ID: 27714130
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Gold Ultrathin Nanorods with Controlled Aspect Ratios and Surface Modifications: Formation Mechanism and Localized Surface Plasmon Resonance.
    Takahata R; Yamazoe S; Koyasu K; Imura K; Tsukuda T
    J Am Chem Soc; 2018 May; 140(21):6640-6647. PubMed ID: 29694041
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Hydroxide assisted synthesis of monodisperse and biocompatible gold nanoparticles with dextran.
    Tang J; Fu X; Ou Q; Gao K; Man SQ; Guo J; Liu Y
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():759-767. PubMed ID: 30274109
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching.
    Chen L; Deming CP; Peng Y; Hu P; Stofan J; Chen S
    Nanoscale; 2016 Aug; 8(30):14565-72. PubMed ID: 27417026
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bulky Surface Ligands Promote Surface Reactivities of [Ag
    Ren L; Yuan P; Su H; Malola S; Lin S; Tang Z; Teo BK; Häkkinen H; Zheng L; Zheng N
    J Am Chem Soc; 2017 Sep; 139(38):13288-13291. PubMed ID: 28892364
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.
    Li CH; Jamison AC; Rittikulsittichai S; Lee TC; Lee TR
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19943-50. PubMed ID: 25321928
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electrochemical and optical characterization of triarylamine functionalized gold nanoparticles.
    Müller CI; Lambert C
    Langmuir; 2011 Apr; 27(8):5029-39. PubMed ID: 21417368
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Single-step generation of fluorophore-encapsulated gold nanoparticle core-shell materials.
    Sardar R; Shem PM; Pecchia-Bekkum C; Bjorge NS; Shumaker-Parry JS
    Nanotechnology; 2010 Aug; 21(34):345603. PubMed ID: 20683134
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Infra-red spectroscopy of size selected Au25, Au38 and Au144 ligand protected gold clusters.
    Farrag M; Tschurl M; Dass A; Heiz U
    Phys Chem Chem Phys; 2013 Aug; 15(30):12539-42. PubMed ID: 23788003
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Investigation of plasmonic gold-silica core-shell nanoparticle stability in dye-sensitized solar cell applications.
    Törngren B; Akitsu K; Ylinen A; Sandén S; Jiang H; Ruokolainen J; Komatsu M; Hamamura T; Nakazaki J; Kubo T; Segawa H; Österbacka R; Smått JH
    J Colloid Interface Sci; 2014 Aug; 427():54-61. PubMed ID: 24388614
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Preparation, characterization, and chemical stability of gold nanoparticles coated with mono-, bis-, and tris-chelating alkanethiols.
    Srisombat LO; Park JS; Zhang S; Lee TR
    Langmuir; 2008 Aug; 24(15):7750-4. PubMed ID: 18620437
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electroactive gold nanoparticles protected by 4-ferrocene thiophenol monolayer.
    Li D; Zhang Y; Jiang J; Li J
    J Colloid Interface Sci; 2003 Aug; 264(1):109-13. PubMed ID: 12885526
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparison study of the solution phase versus solid phase place exchange reactions in the controlled functionalization of gold nanoparticles.
    Shaffer AW; Worden JG; Huo Q
    Langmuir; 2004 Sep; 20(19):8343-51. PubMed ID: 15350112
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Thiolate-Protected Gold Nanoparticles Via Physical Approach: Unusual Structural and Photophysical Characteristics.
    Ishida Y; Akita I; Sumi T; Matsubara M; Yonezawa T
    Sci Rep; 2016 Jul; 6():29928. PubMed ID: 27427446
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synthesis, size control and fluorescence studies of gold nanoparticles in carboxymethylated chitosan aqueous solutions.
    Huang L; Zhai M; Peng J; Xu L; Li J; Wei G
    J Colloid Interface Sci; 2007 Dec; 316(2):398-404. PubMed ID: 17707389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.