BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31299383)

  • 1. Cbl-PI3K interaction regulates Cathepsin K secretion in osteoclasts.
    Yu J; Adapala NS; Doherty L; Sanjay A
    Bone; 2019 Oct; 127():376-385. PubMed ID: 31299383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of Cbl-PI3K interaction enhances osteoclast survival due to p21-Ras mediated PI3K activation independent of Cbl-b.
    Adapala NS; Barbe MF; Tsygankov AY; Lorenzo JA; Sanjay A
    J Cell Biochem; 2014 Jul; 115(7):1277-89. PubMed ID: 24470255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The loss of Cbl-phosphatidylinositol 3-kinase interaction perturbs RANKL-mediated signaling, inhibiting bone resorption and promoting osteoclast survival.
    Adapala NS; Barbe MF; Langdon WY; Nakamura MC; Tsygankov AY; Sanjay A
    J Biol Chem; 2010 Nov; 285(47):36745-58. PubMed ID: 20851882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of Cbl-PI3K interaction in mice prevents significant bone loss following ovariectomy.
    Adapala NS; Holland D; Scanlon V; Barbe MF; Langdon WY; Tsygankov AY; Lorenzo JA; Sanjay A
    Bone; 2014 Oct; 67():1-9. PubMed ID: 24994594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cbl-phosphatidylinositol 3 kinase interaction differentially regulates macrophage colony-stimulating factor-mediated osteoclast survival and cytoskeletal reorganization.
    Adapala NS; Barbe MF; Langdon WY; Tsygankov AY; Sanjay A
    Ann N Y Acad Sci; 2010 Mar; 1192():376-84. PubMed ID: 20392263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abrogation of Cbl-PI3K interaction increases bone formation and osteoblast proliferation.
    Brennan T; Adapala NS; Barbe MF; Yingling V; Sanjay A
    Calcif Tissue Int; 2011 Nov; 89(5):396-410. PubMed ID: 21952831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Cbl-PI3K Interaction during Skeletal Remodeling in a Murine Model of Bone Repair.
    Scanlon V; Soung do Y; Adapala NS; Morgan E; Hansen MF; Drissi H; Sanjay A
    PLoS One; 2015; 10(9):e0138194. PubMed ID: 26393915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of Cbl-PI3K interaction modulates the periosteal response to fracture by enhancing osteogenic commitment and differentiation.
    Scanlon V; Walia B; Yu J; Hansen M; Drissi H; Maye P; Sanjay A
    Bone; 2017 Feb; 95():124-135. PubMed ID: 27884787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. V-ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast-mediated bone resorption.
    Yang DQ; Feng S; Chen W; Zhao H; Paulson C; Li YP
    J Bone Miner Res; 2012 Aug; 27(8):1695-707. PubMed ID: 22467241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K.
    Ohmae S; Noma N; Toyomoto M; Shinohara M; Takeiri M; Fuji H; Takemoto K; Iwaisako K; Fujita T; Takeda N; Kawatani M; Aoyama M; Hagiwara M; Ishihama Y; Asagiri M
    Sci Rep; 2017 Mar; 7():41710. PubMed ID: 28300073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cathepsin K activity-dependent regulation of osteoclast actin ring formation and bone resorption.
    Wilson SR; Peters C; Saftig P; Brömme D
    J Biol Chem; 2009 Jan; 284(4):2584-92. PubMed ID: 19028686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory Effects of 2N1HIA (2-(3-(2-Fluoro-4-Methoxyphenyl)-6-Oxo-1(6H)-Pyridazinyl)-
    Ahn SH; Chen Z; Lee J; Lee SW; Min SH; Kim ND; Lee TH
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30501117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of cathepsin K accelerates the resorption cycle and osteoblast differentiation in vitro.
    Morko J; Kiviranta R; Mulari MT; Ivaska KK; Väänänen HK; Vuorio E; Laitala-Leinonen T
    Bone; 2009 Apr; 44(4):717-28. PubMed ID: 19118660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the dynein-dynactin complex unveils motor-specific functions in osteoclast formation and bone resorption.
    Ng PY; Cheng TS; Zhao H; Ye S; Sm Ang E; Khor EC; Feng HT; Xu J; Zheng MH; Pavlos NJ
    J Bone Miner Res; 2013 Jan; 28(1):119-34. PubMed ID: 22887640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of the cathepsin K inhibitor odanacatib on osteoclastic bone resorption and vesicular trafficking.
    Leung P; Pickarski M; Zhuo Y; Masarachia PJ; Duong LT
    Bone; 2011 Oct; 49(4):623-35. PubMed ID: 21718816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of the organic phase of bone by osteoclasts: a secondary role for lysosomal acidification.
    Henriksen K; Sørensen MG; Nielsen RH; Gram J; Schaller S; Dziegiel MH; Everts V; Bollerslev J; Karsdal MA
    J Bone Miner Res; 2006 Jan; 21(1):58-66. PubMed ID: 16355274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monocytes/Macrophages Upregulate the Hyaluronidase HYAL1 and Adapt Its Subcellular Trafficking to Promote Extracellular Residency upon Differentiation into Osteoclasts.
    Puissant E; Boonen M
    PLoS One; 2016; 11(10):e0165004. PubMed ID: 27755597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein kinase C-delta deficiency perturbs bone homeostasis by selective uncoupling of cathepsin K secretion and ruffled border formation in osteoclasts.
    Cremasco V; Decker CE; Stumpo D; Blackshear PJ; Nakayama KI; Nakayama K; Lupu TS; Graham DB; Novack DV; Faccio R
    J Bone Miner Res; 2012 Dec; 27(12):2452-63. PubMed ID: 22806935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone.
    Everts V; Korper W; Hoeben KA; Jansen ID; Bromme D; Cleutjens KB; Heeneman S; Peters C; Reinheckel T; Saftig P; Beertsen W
    J Bone Miner Res; 2006 Sep; 21(9):1399-408. PubMed ID: 16939398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inhibitory effect and the molecular mechanism of glabridin on RANKL-induced osteoclastogenesis in RAW264.7 cells.
    Kim HS; Suh KS; Sul D; Kim BJ; Lee SK; Jung WW
    Int J Mol Med; 2012 Feb; 29(2):169-77. PubMed ID: 22038020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.