These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31299428)

  • 1. Elucidating pyrolysis behaviour of activated sludge in granular and flocculent form: Reaction kinetics and mechanism.
    Li X; Lin S; Hao T; Khanal SK; Chen G
    Water Res; 2019 Oct; 162():409-419. PubMed ID: 31299428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics evaluation and thermal decomposition characteristics of co-pyrolysis of municipal sewage sludge and hazelnut shell.
    Zhao B; Xu X; Li H; Chen X; Zeng F
    Bioresour Technol; 2018 Jan; 247():21-29. PubMed ID: 28946090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics, kinetics and thermal decomposition characteristics of sewage sludge during slow pyrolysis.
    Mphahlele K; Matjie RH; Osifo PO
    J Environ Manage; 2021 Apr; 284():112006. PubMed ID: 33535126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion.
    Stolarek P; Ledakowicz S
    Water Sci Technol; 2001; 44(10):333-9. PubMed ID: 11794675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The competition between flocculent sludge and aerobic granules during the long-term operation period of granular sludge sequencing batch reactor.
    Liu YQ; Tay JH
    Environ Technol; 2012 Dec; 33(22-24):2619-26. PubMed ID: 23437662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolytic characteristics of sewage sludge.
    Thipkhunthod P; Meeyoo V; Rangsunvigit P; Kitiyanan B; Siemanond K; Rirksomboon T
    Chemosphere; 2006 Aug; 64(6):955-62. PubMed ID: 16483633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network.
    Naqvi SR; Hameed Z; Tariq R; Taqvi SA; Ali I; Niazi MBK; Noor T; Hussain A; Iqbal N; Shahbaz M
    Waste Manag; 2019 Feb; 85():131-140. PubMed ID: 30803566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolytic kinetics, reaction mechanisms and gas emissions of waste automotive paint sludge via TG-FTIR and Py-GC/MS.
    Tian L; Liu T; Yang J; Yang H; Liu Z; Zhao Y; Huang Q; Huang Z
    J Environ Manage; 2023 Feb; 328():116962. PubMed ID: 36470002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auxiliary effect of CO
    Wang Z; Wang Z; Gong Z; Li X; Chu Z; Du L; Wu J; Jin Z
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(6):460-469. PubMed ID: 35603685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive kinetics study of coconut shell waste pyrolysis.
    Ali I; Bahaitham H; Naebulharam R
    Bioresour Technol; 2017 Jul; 235():1-11. PubMed ID: 28351726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on the pyrolysis of microalgal-bacterial granular sludge: Products, kinetics, and potential mechanisms.
    Cui B; Chen Z; Guo D; Liu Y
    Bioresour Technol; 2022 Apr; 349():126328. PubMed ID: 34780909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistance and resilience of nitrifying bacteria in aerobic granules to pH shock.
    Liu YQ; Lan GH; Zeng P
    Lett Appl Microbiol; 2015 Jul; 61(1):91-7. PubMed ID: 25900745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation mechanism of persistent free radicals during pyrolysis of Fenton-conditioned sewage sludge: Influence of NOM and iron.
    Li Z; Chen S; Liu L; Qian D; Yuan M; Yu J; Chen Z; Yang J; Su X; Hu J; Hou H
    Water Res; 2024 May; 254():121376. PubMed ID: 38489852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ultrasonic treatment on the pyrolysis characteristics and kinetics of waste activated sludge.
    Jia H; Liu B; Zhang X; Chen J; Ren W
    Environ Res; 2020 Apr; 183():109250. PubMed ID: 32088608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different pyrolysis kinetics and product distribution of municipal and livestock manure sewage sludge.
    Lee S; Kim YM; Siddiqui MZ; Park YK
    Environ Pollut; 2021 Sep; 285():117197. PubMed ID: 33930823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of nanosilver removal by flocculent and granular sludge and short- and long-term inhibition impacts.
    Gu L; Li Q; Quan X; Cen Y; Jiang X
    Water Res; 2014 Jul; 58():62-70. PubMed ID: 24739670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal pyrolysis characteristics of polymer flocculated waste activated sludge.
    Chu CP; Lee DJ; Chang CY
    Water Res; 2001 Jan; 35(1):49-56. PubMed ID: 11257893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-temperature co-pyrolysis behaviours and kinetics of oily sludge: effect of agricultural biomass.
    Zhou X; Jia H; Qu C; Fan D; Wang C
    Environ Technol; 2017 Feb; 38(3):361-369. PubMed ID: 27242020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal characterization and syngas production from the pyrolysis of biophysical dried and traditional thermal dried sewage sludge.
    Han R; Zhao C; Liu J; Chen A; Wang H
    Bioresour Technol; 2015 Dec; 198():276-82. PubMed ID: 26402870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM).
    Lin Y; Chen Z; Dai M; Fang S; Liao Y; Yu Z; Ma X
    Bioresour Technol; 2018 Jul; 259():173-180. PubMed ID: 29550731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.