These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 31299624)
1. Shunt connection: An intelligent skipping of contiguous blocks for optimizing MobileNet-V2. Singh B; Toshniwal D; Allur SK Neural Netw; 2019 Oct; 118():192-203. PubMed ID: 31299624 [TBL] [Abstract][Full Text] [Related]
2. Quantization Friendly MobileNet (QF-MobileNet) Architecture for Vision Based Applications on Embedded Platforms. Kulkarni U; S M M; Gurlahosur SV; Bhogar G Neural Netw; 2021 Apr; 136():28-39. PubMed ID: 33429131 [TBL] [Abstract][Full Text] [Related]
3. A precise model for skin cancer diagnosis using hybrid U-Net and improved MobileNet-V3 with hyperparameters optimization. Kumar Lilhore U; Simaiya S; Sharma YK; Kaswan KS; Rao KBVB; Rao VVRM; Baliyan A; Bijalwan A; Alroobaea R Sci Rep; 2024 Feb; 14(1):4299. PubMed ID: 38383520 [TBL] [Abstract][Full Text] [Related]
4. Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM. Srinivasu PN; SivaSai JG; Ijaz MF; Bhoi AK; Kim W; Kang JJ Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33919583 [TBL] [Abstract][Full Text] [Related]
5. IoTNet: An Efficient and Accurate Convolutional Neural Network for IoT Devices. Lawrence T; Zhang L Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847434 [TBL] [Abstract][Full Text] [Related]
6. Redundant feature pruning for accelerated inference in deep neural networks. Ayinde BO; Inanc T; Zurada JM Neural Netw; 2019 Oct; 118():148-158. PubMed ID: 31279285 [TBL] [Abstract][Full Text] [Related]
7. Diagnosis of skin diseases in the era of deep learning and mobile technology. Goceri E Comput Biol Med; 2021 Jul; 134():104458. PubMed ID: 34000524 [TBL] [Abstract][Full Text] [Related]
9. A New Image Classification Approach via Improved MobileNet Models with Local Receptive Field Expansion in Shallow Layers. Wang W; Hu Y; Zou T; Liu H; Wang J; Wang X Comput Intell Neurosci; 2020; 2020():8817849. PubMed ID: 32802028 [TBL] [Abstract][Full Text] [Related]
10. Evolving Connections in Group of Neurons for Robust Learning. Liu J; Gong M; Xiao L; Zhang W; Liu F IEEE Trans Cybern; 2022 May; 52(5):3069-3082. PubMed ID: 33027024 [TBL] [Abstract][Full Text] [Related]
11. CED-Net: A more effective DenseNet model with channel enhancement. Li X; Chen H; Zheng D; Xu X Math Biosci Eng; 2022 Aug; 19(12):12232-12246. PubMed ID: 36653994 [TBL] [Abstract][Full Text] [Related]
12. Towards Accurate and Compact Architectures via Neural Architecture Transformer. Guo Y; Zheng Y; Tan M; Chen Q; Li Z; Chen J; Zhao P; Huang J IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):6501-6516. PubMed ID: 34097606 [TBL] [Abstract][Full Text] [Related]
13. Deep Neural Network Compression by In-Parallel Pruning-Quantization. Tung F; Mori G IEEE Trans Pattern Anal Mach Intell; 2020 Mar; 42(3):568-579. PubMed ID: 30561340 [TBL] [Abstract][Full Text] [Related]
14. MiniNet: Dense squeeze with depthwise separable convolutions for image classification in resource-constrained autonomous systems. Tseng FH; Yeh KH; Kao FY; Chen CY ISA Trans; 2023 Jan; 132():120-130. PubMed ID: 36038366 [TBL] [Abstract][Full Text] [Related]
15. Automated deep bottleneck residual 82-layered architecture with Bayesian optimization for the classification of brain and common maternal fetal ultrasound planes. Rauf F; Khan MA; Bashir AK; Jabeen K; Hamza A; Alzahrani AI; Alalwan N; Masood A Front Med (Lausanne); 2023; 10():1330218. PubMed ID: 38188327 [TBL] [Abstract][Full Text] [Related]
16. Norm-Preservation: Why Residual Networks Can Become Extremely Deep? Zaeemzadeh A; Rahnavard N; Shah M IEEE Trans Pattern Anal Mach Intell; 2021 Nov; 43(11):3980-3990. PubMed ID: 32340937 [TBL] [Abstract][Full Text] [Related]
18. Depth with nonlinearity creates no bad local minima in ResNets. Kawaguchi K; Bengio Y Neural Netw; 2019 Oct; 118():167-174. PubMed ID: 31295691 [TBL] [Abstract][Full Text] [Related]
19. LAP: Latency-aware automated pruning with dynamic-based filter selection. Chen Z; Liu C; Yang W; Li K; Li K Neural Netw; 2022 Aug; 152():407-418. PubMed ID: 35609502 [TBL] [Abstract][Full Text] [Related]
20. Extending the Morphological Hit-or-Miss Transform to Deep Neural Networks. Islam MA; Murray B; Buck A; Anderson DT; Scott GJ; Popescu M; Keller J IEEE Trans Neural Netw Learn Syst; 2021 Nov; 32(11):4826-4838. PubMed ID: 33021943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]