BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 31299888)

  • 1. PolyCRACKER, a robust method for the unsupervised partitioning of polyploid subgenomes by signatures of repetitive DNA evolution.
    Gordon SP; Levy JJ; Vogel JP
    BMC Genomics; 2019 Jul; 20(1):580. PubMed ID: 31299888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic evolution of rht-1 homologous regions in grass genomes.
    Wu J; Kong X; Shi C; Gu Y; Jin C; Gao L; Jia J
    PLoS One; 2013; 8(9):e75544. PubMed ID: 24086561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton.
    Zhao XP; Si Y; Hanson RE; Crane CF; Price HJ; Stelly DM; Wendel JF; Paterson AH
    Genome Res; 1998 May; 8(5):479-92. PubMed ID: 9582192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coevolution of A and B genomes in allotetraploid Triticum dicoccoides.
    Belyayev A; Raskina O; Korol A; Nevo E
    Genome; 2000 Dec; 43(6):1021-6. PubMed ID: 11195333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transposon signatures of allopolyploid genome evolution.
    Session AM; Rokhsar DS
    Nat Commun; 2023 Jun; 14(1):3180. PubMed ID: 37263993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SubPhaser: a robust allopolyploid subgenome phasing method based on subgenome-specific k-mers.
    Jia KH; Wang ZX; Wang L; Li GY; Zhang W; Wang XL; Xu FJ; Jiao SQ; Zhou SS; Liu H; Ma Y; Bi G; Zhao W; El-Kassaby YA; Porth I; Li G; Zhang RG; Mao JF
    New Phytol; 2022 Jul; 235(2):801-809. PubMed ID: 35460274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does one subgenome become dominant in the formation and evolution of a polyploid?
    Liu C; Wang YG
    Ann Bot; 2023 Feb; 131(1):11-16. PubMed ID: 35291007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct nucleotide patterns among three subgenomes of bread wheat and their potential origins during domestication after allopolyploidization.
    Zhao Y; Dong L; Jiang C; Wang X; Xie J; Rashid MAR; Liu Y; Li M; Bu Z; Wang H; Ma X; Sun S; Wang X; Bo C; Zhou T; Kong L
    BMC Biol; 2020 Dec; 18(1):188. PubMed ID: 33267868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved and robust method to efficiently deplete repetitive elements from complex plant genomes.
    Ichida H; Abe T
    Plant Sci; 2019 Mar; 280():455-460. PubMed ID: 30824026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dating the Species Network: Allopolyploidy and Repetitive DNA Evolution in American Daisies (Melampodium sect. Melampodium, Asteraceae).
    Mccann J; Jang TS; Macas J; Schneeweiss GM; Matzke NJ; Novák P; Stuessy TF; Villaseñor JL; Weiss-Schneeweiss H
    Syst Biol; 2018 Nov; 67(6):1010-1024. PubMed ID: 29562303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyploid evolution: keeping the peace at genomic reunions.
    Rieseberg LH
    Curr Biol; 2001 Nov; 11(22):R925-8. PubMed ID: 11719240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repetitive DNA Restructuring Across Multiple
    Dodsworth S; Guignard MS; Pérez-Escobar OA; Struebig M; Chase MW; Leitch AR
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32092894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics.
    Fu D; Mason AS; Xiao M; Yan H
    Plant Sci; 2016 Jan; 242():37-46. PubMed ID: 26566823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary origins and dynamics of octoploid strawberry subgenomes revealed by dense targeted capture linkage maps.
    Tennessen JA; Govindarajulu R; Ashman TL; Liston A
    Genome Biol Evol; 2014 Dec; 6(12):3295-313. PubMed ID: 25477420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Subgenome Additive and Interaction Effects in Allohexaploid Wheat.
    Santantonio N; Jannink JL; Sorrells M
    G3 (Bethesda); 2019 Mar; 9(3):685-698. PubMed ID: 30455185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Phylogeny of Triticum L. and Aegilops L. genuses inferred from a comparative analysis of nucleotide sequences in promoter rDNA regions of individual species].
    Vakhitov VA; Chemeris AV; Sabirzhanov BE; Akhunov ED; Kulikov AM; Nikonorov IuM; Gimalov FR; Bikbulatova SM; Baĭmiev AKh
    Genetika; 2003 Jan; 39(1):5-17. PubMed ID: 12624928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic reconstruction based on low copy DNA sequence data in an allopolyploid: the B genome of wheat.
    Blake NK; Lehfeldt BR; Lavin M; Talbert LE
    Genome; 1999 Apr; 42(2):351-60. PubMed ID: 10231966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic analysis of Gossypium L. using restriction fragment length polymorphism of repeated sequences.
    Zhang M; Rong Y; Lee MK; Zhang Y; Stelly DM; Zhang HB
    Mol Genet Genomics; 2015 Oct; 290(5):1859-72. PubMed ID: 25877517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a D genome specific marker resource for diploid and hexaploid wheat.
    Wang Y; Drader T; Tiwari VK; Dong L; Kumar A; Huo N; Ghavami F; Iqbal MJ; Lazo GR; Leonard J; Gill BS; Kianian SF; Luo MC; Gu YQ
    BMC Genomics; 2015 Aug; 16(1):646. PubMed ID: 26315263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum.
    Volkov RA; Borisjuk NV; Panchuk II; Schweizer D; Hemleben V
    Mol Biol Evol; 1999 Mar; 16(3):311-20. PubMed ID: 10331258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.