These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31300159)

  • 1. Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network.
    Wu J; Hu K; Cheng Y; Zhu H; Shao X; Wang Y
    ISA Trans; 2020 Feb; 97():241-250. PubMed ID: 31300159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion.
    Peng C; Chen Y; Chen Q; Tang Z; Li L; Gui W
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A DLSTM-Network-Based Approach for Mechanical Remaining Useful Life Prediction.
    Liu Y; Liu Z; Zuo H; Jiang H; Li P; Li X
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction.
    Zhao C; Huang X; Li Y; Yousaf Iqbal M
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time Series Multiple Channel Convolutional Neural Network with Attention-Based Long Short-Term Memory for Predicting Bearing Remaining Useful Life.
    Jiang JR; Lee JE; Zeng YM
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31888110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long Short-Term Memory Neural Network with Transfer Learning and Ensemble Learning for Remaining Useful Life Prediction.
    Wang L; Liu H; Pan Z; Fan D; Zhou C; Wang Z
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new ensemble residual convolutional neural network for remaining useful life estimation.
    Wen L; Dong Y; Gao L
    Math Biosci Eng; 2019 Jan; 16(2):862-880. PubMed ID: 30861669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robustness testing framework for RUL prediction Deep LSTM networks.
    Sayah M; Guebli D; Al Masry Z; Zerhouni N
    ISA Trans; 2021 Jul; 113():28-38. PubMed ID: 32646591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint Learning of Failure Mode Recognition and Prognostics for Degradation Processes.
    Wang D; Xian X; Song C
    IEEE Trans Autom Sci Eng; 2024 Apr; 21(2):1421-1433. PubMed ID: 38595999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme.
    Hou G; Xu S; Zhou N; Yang L; Fu Q
    Comput Intell Neurosci; 2020; 2020():9601389. PubMed ID: 32802032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remaining Useful Life Prognosis for Turbofan Engine Using Explainable Deep Neural Networks with Dimensionality Reduction.
    Hong CW; Lee C; Lee K; Ko MS; Kim DE; Hur K
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33228051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Deep Adversarial Approach Based on Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics.
    Verstraete D; Droguett E; Modarres M
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31892260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature Drift Compensation of a MEMS Accelerometer Based on DLSTM and ISSA.
    Guo G; Chai B; Cheng R; Wang Y
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Bidirectional Recurrent Neural Networks Ensemble for Remaining Useful Life Prediction of Aircraft Engine.
    Hu K; Cheng Y; Wu J; Zhu H; Shao X
    IEEE Trans Cybern; 2023 Apr; 53(4):2531-2543. PubMed ID: 34822334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Two-Stage Attention-Based Hierarchical Transformer for Turbofan Engine Remaining Useful Life Prediction.
    Fan Z; Li W; Chang KC
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network.
    Wang H; Yang J; Shi L; Wang R
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engine remaining useful life prediction model based on R-Vine copula with multi-sensor data.
    Liu S; Jiang H
    Heliyon; 2023 Jun; 9(6):e17118. PubMed ID: 37389066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-distanced gates in long short-term memory networks.
    Gao R; Tang Y; Xu K; Huo Y; Bao S; Antic SL; Epstein ES; Deppen S; Paulson AB; Sandler KL; Massion PP; Landman BA
    Med Image Anal; 2020 Oct; 65():101785. PubMed ID: 32745977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel transformer-based DL model enhanced by position-sensitive attention and gated hierarchical LSTM for aero-engine RUL prediction.
    Chen X
    Sci Rep; 2024 May; 14(1):10061. PubMed ID: 38698017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local-Global Correlation Fusion-Based Graph Neural Network for Remaining Useful Life Prediction.
    Wang Y; Wu M; Jin R; Li X; Xie L; Chen Z
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; PP():. PubMed ID: 37983145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.