These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31300664)

  • 41. Entangled states shaping with CV states of definite parity.
    Kuts DA; Podoshvedov SA
    Sci Rep; 2022 Jan; 12(1):1558. PubMed ID: 35091573
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities.
    Hu S; Cui WX; Wang DY; Bai CH; Guo Q; Wang HF; Zhu AD; Zhang S
    Sci Rep; 2015 Jul; 5():11321. PubMed ID: 26225781
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrafast measurement of a single-photon wave packet using an optical Kerr gate.
    Yabuno M; Takumi T; China F; Miki S; Terai H; Mosley PJ; Jin RB; Shimizu R
    Opt Express; 2022 Feb; 30(4):4999-5007. PubMed ID: 35209471
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On-Demand Generation of Indistinguishable Photons in the Telecom C-Band Using Quantum Dot Devices.
    Vajner DA; Holewa P; Zięba-Ostój E; Wasiluk M; von Helversen M; Sakanas A; Huck A; Yvind K; Gregersen N; Musiał A; Syperek M; Semenova E; Heindel T
    ACS Photonics; 2024 Feb; 11(2):339-347. PubMed ID: 38405394
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phonon-assisted decoherence in the production of polarization-entangled photons in a single semiconductor quantum dot.
    Hohenester U; Pfanner G; Seliger M
    Phys Rev Lett; 2007 Jul; 99(4):047402. PubMed ID: 17678402
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect.
    Muller A; Fang W; Lawall J; Solomon GS
    Phys Rev Lett; 2009 Nov; 103(21):217402. PubMed ID: 20366067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proposed Scheme to Generate Bright Entangled Photon Pairs by Application of a Quadrupole Field to a Single Quantum Dot.
    Zeeshan M; Sherlekar N; Ahmadi A; Williams RL; Reimer ME
    Phys Rev Lett; 2019 Jun; 122(22):227401. PubMed ID: 31283293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot.
    Rota MB; Krieger TM; Buchinger Q; Beccaceci M; Neuwirth J; Huet H; Horová N; Lovicu G; Ronco G; Covre da Silva SF; Pettinari G; Moczała-Dusanowska M; Kohlberger C; Manna S; Stroj S; Freund J; Yuan X; Schneider C; Ježek M; Höfling S; Basso Basset F; Huber-Loyola T; Rastelli A; Trotta R
    eLight; 2024; 4(1):13. PubMed ID: 39070906
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots.
    Zeuner KD; Jöns KD; Schweickert L; Reuterskiöld Hedlund C; Nuñez Lobato C; Lettner T; Wang K; Gyger S; Schöll E; Steinhauer S; Hammar M; Zwiller V
    ACS Photonics; 2021 Aug; 8(8):2337-2344. PubMed ID: 34476289
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-speed linear optics quantum computing using active feed-forward.
    Prevedel R; Walther P; Tiefenbacher F; Böhi P; Kaltenbaek R; Jennewein T; Zeilinger A
    Nature; 2007 Jan; 445(7123):65-9. PubMed ID: 17203057
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities.
    Wang GY; Ai Q; Ren BC; Li T; Deng FG
    Opt Express; 2016 Dec; 24(25):28444-28458. PubMed ID: 27958494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deterministic conversion of a four-photon GHZ state to a W state via homodyne measurement.
    Cui WX; Hu S; Wang HF; Zhu AD; Zhang S
    Opt Express; 2016 Jul; 24(14):15319-27. PubMed ID: 27410808
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities.
    Wei HR; Deng FG; Long GL
    Opt Express; 2016 Aug; 24(16):18619-30. PubMed ID: 27505824
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Creating heralded hyper-entangled photons using Rydberg atoms.
    Ghosh S; Rivera N; Eisenstein G; Kaminer I
    Light Sci Appl; 2021 May; 10(1):100. PubMed ID: 33976109
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A quantum gate between a flying optical photon and a single trapped atom.
    Reiserer A; Kalb N; Rempe G; Ritter S
    Nature; 2014 Apr; 508(7495):237-40. PubMed ID: 24717512
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity.
    Li XH; Ghose S
    Opt Express; 2015 Feb; 23(3):3550-62. PubMed ID: 25836208
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hyperentanglement concentration of nonlocal two-photon six-qubit systems via the cross-Kerr nonlinearity.
    Liu Q; Song GZ; Qiu TH; Zhang XM; Ma HY; Zhang M
    Sci Rep; 2020 Dec; 10(1):21444. PubMed ID: 33293577
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rabi splitting and optical Kerr nonlinearity of quantum dot mediated by Majorana fermions.
    Chen HJ; Wu HW
    Sci Rep; 2018 Dec; 8(1):17677. PubMed ID: 30518767
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantum controlled-phase-flip gate between a flying optical photon and a Rydberg atomic ensemble.
    Hao YM; Lin GW; Xia K; Lin XM; Niu YP; Gong SQ
    Sci Rep; 2015 May; 5():10005. PubMed ID: 25966448
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generation of ultraviolet entangled photons in a semiconductor.
    Edamatsu K; Oohata G; Shimizu R; Itoh T
    Nature; 2004 Sep; 431(7005):167-70. PubMed ID: 15356626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.