BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 31300803)

  • 1. Creating functional chromosome fusions in yeast with CRISPR-Cas9.
    Shao Y; Lu N; Xue X; Qin Z
    Nat Protoc; 2019 Aug; 14(8):2521-2545. PubMed ID: 31300803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9 Facilitated Multiple-Chromosome Fusion in Saccharomyces cerevisiae.
    Shao Y; Lu N; Qin Z; Xue X
    ACS Synth Biol; 2018 Nov; 7(11):2706-2708. PubMed ID: 30352154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast.
    Luo J; Sun X; Cormack BP; Boeke JD
    Nature; 2018 Aug; 560(7718):392-396. PubMed ID: 30069047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reshuffling yeast chromosomes with CRISPR/Cas9.
    Fleiss A; O'Donnell S; Fournier T; Lu W; Agier N; Delmas S; Schacherer J; Fischer G
    PLoS Genet; 2019 Aug; 15(8):e1008332. PubMed ID: 31465441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
    Generoso WC; Gottardi M; Oreb M; Boles E
    J Microbiol Methods; 2016 Aug; 127():203-205. PubMed ID: 27327211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic and Genotypic Consequences of CRISPR/Cas9 Editing of the Replication Origins in the rDNA of
    Sanchez JC; Ollodart A; Large CRL; Clough C; Alvino GM; Tsuchiya M; Crane M; Kwan EX; Kaeberlein M; Dunham MJ; Raghuraman MK; Brewer BJ
    Genetics; 2019 Sep; 213(1):229-249. PubMed ID: 31292210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A user-friendly and streamlined protocol for CRISPR/Cas9 genome editing in budding yeast.
    Novarina D; Koutsoumpa A; Milias-Argeitis A
    STAR Protoc; 2022 Jun; 3(2):101358. PubMed ID: 35712010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise genome-wide base editing by the CRISPR Nickase system in yeast.
    Satomura A; Nishioka R; Mori H; Sato K; Kuroda K; Ueda M
    Sci Rep; 2017 May; 7(1):2095. PubMed ID: 28522803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-PCD and CRISPR-PCRep: Two novel technologies for simultaneous multiple segmental chromosomal deletion/replacement in Saccharomyces cerevisiae.
    Easmin F; Sasano Y; Kimura S; Hassan N; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2020 Feb; 129(2):129-139. PubMed ID: 31585858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52.
    Shao S; Ren C; Liu Z; Bai Y; Chen Z; Wei Z; Wang X; Zhang Z; Xu K
    Int J Biochem Cell Biol; 2017 Nov; 92():43-52. PubMed ID: 28928041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha.
    Numamoto M; Maekawa H; Kaneko Y
    J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementing CRISPR-Cas9 Yeast Practicals into Biology Curricula.
    Juríková K; Sepšiová R; Ševčovičová A; Tomáška Ľ; Džugasová V
    CRISPR J; 2022 Apr; 5(2):181-186. PubMed ID: 35333620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae.
    EauClaire SF; Webb CJ
    Yeast; 2019 Oct; 36(10):607-615. PubMed ID: 31301239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology.
    Huck S; Bock J; Girardello J; Gauert M; Pul Ü
    RNA Biol; 2019 Apr; 16(4):397-403. PubMed ID: 29996713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair of a Site-Specific DNA Cleavage: Old-School Lessons for Cas9-Mediated Gene Editing.
    Gallagher DN; Haber JE
    ACS Chem Biol; 2018 Feb; 13(2):397-405. PubMed ID: 29083855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Chromosome Synthesis with a Semiquantitative Phenotypic Assay and Refined Assembly Strategy.
    Lin Y; Zou X; Zheng Y; Cai Y; Dai J
    ACS Synth Biol; 2019 Oct; 8(10):2203-2211. PubMed ID: 31532633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Fusion of Cells with CRISPR-Cas9 Editing for the Cloning of Large DNA Fragments or Complete Bacterial Genomes in Yeast.
    Guesdon G; Gourgues G; Rideau F; Ipoutcha T; Manso-Silván L; Jules M; Sirand-Pugnet P; Blanchard A; Lartigue C
    ACS Synth Biol; 2023 Nov; 12(11):3252-3266. PubMed ID: 37843014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.