BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31301008)

  • 1. Coenzyme Binding Site Analysis of an Isopropanol Dehydrogenase with Wide Substrate Spectrum and Excellent Organic Solvent Tolerance.
    Jiang W; Fang BS
    Appl Biochem Biotechnol; 2020 Jan; 190(1):18-29. PubMed ID: 31301008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP
    Chen H; Zhu Z; Huang R; Zhang YP
    Sci Rep; 2016 Nov; 6():36311. PubMed ID: 27805055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and molecular characterization of the isocitrate dehydrogenase with dual coenzyme specificity from the obligate methylotroph Methylobacillus Flagellatus.
    Romkina AY; Kiriukhin MY
    PLoS One; 2017; 12(4):e0176056. PubMed ID: 28423051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and Application of a Novel Glucose Dehydrogenase with Excellent Organic Solvent Tolerance for Cofactor Regeneration in Carbonyl Reduction.
    Li X; Jiang J; Li X; Liu D; Han M; Li W; Zhang H
    Appl Biochem Biotechnol; 2023 Dec; 195(12):7553-7567. PubMed ID: 37014512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from Pyrococcus furiosus.
    Steen IH; Lien T; Madsen MS; Birkeland NK
    Arch Microbiol; 2002 Oct; 178(4):297-300. PubMed ID: 12209263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30.
    Zhang L; Xu Q; Zhan S; Li Y; Lin H; Sun S; Sha L; Hu K; Guan X; Shen Y
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1175-84. PubMed ID: 23666479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and expression in E. coli of an organic solvent-tolerant and alkali-resistant glucose 1-dehydrogenase from Lysinibacillus sphaericus G10.
    Ding HT; Du YQ; Liu DF; Li ZL; Chen XJ; Zhao YH
    Bioresour Technol; 2011 Jan; 102(2):1528-36. PubMed ID: 20805024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, expression, and characterization of a novel diketoreductase from Acinetobacter baylyi.
    Wu X; Liu N; He Y; Chen Y
    Acta Biochim Biophys Sin (Shanghai); 2009 Feb; 41(2):163-70. PubMed ID: 19204834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-time dynamics of batch-wise enzymatic cycling system composed of two kinds of dehydrogenase mediated by NAD(P)H for mass production of chiral hydroxyl compounds.
    Yamane T
    J Biosci Bioeng; 2019 Sep; 128(3):337-343. PubMed ID: 30956102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a thermally stable and organic solvent-adaptative NAD+ -dependent formate dehydrogenase from Bacillus sp. F1.
    Ding HT; Liu DF; Li ZL; Du YQ; Xu XH; Zhao YH
    J Appl Microbiol; 2011 Nov; 111(5):1075-85. PubMed ID: 21848698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coenzymatic properties of low molecular-weight and macromolecular N6-derivatives of NAD+ and NADP+ with dehydrogenases of interest for organic synthesis.
    Ottolina G; Carrea G; Riva S; Bückmann AF
    Enzyme Microb Technol; 1990 Aug; 12(8):596-602. PubMed ID: 1366782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities.
    Martinez-Rojas E; Kurt T; Schmidt U; Meyer V; Garbe LA
    Appl Microbiol Biotechnol; 2014 Nov; 98(22):9249-58. PubMed ID: 24846734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene mining, codon optimization and analysis of binding mechanism of an aldo-keto reductase with high activity, better substrate specificity and excellent solvent tolerance.
    Jiang W; Fu X; Wu W
    PLoS One; 2021; 16(12):e0260787. PubMed ID: 34855894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residues that influence coenzyme preference in the aldehyde dehydrogenases.
    González-Segura L; Riveros-Rosas H; Julián-Sánchez A; Muñoz-Clares RA
    Chem Biol Interact; 2015 Jun; 234():59-74. PubMed ID: 25601141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of engineered carbonyl reductase from Ogataea minuta in Rhodococcus opacus and its application to whole-cell bioconversion in anhydrous solvents.
    Honda K; Ono T; Okano K; Miyake R; Dekishima Y; Kawabata H
    J Biosci Bioeng; 2019 Feb; 127(2):145-149. PubMed ID: 30075940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redesigning secondary structure to invert coenzyme specificity in isopropylmalate dehydrogenase.
    Chen R; Greer A; Dean AM
    Proc Natl Acad Sci U S A; 1996 Oct; 93(22):12171-6. PubMed ID: 8901552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly active mutants of carbonyl reductase S1 with inverted coenzyme specificity and production of optically active alcohols.
    Morikawa S; Nakai T; Yasohara Y; Nanba H; Kizaki N; Hasegawa J
    Biosci Biotechnol Biochem; 2005 Mar; 69(3):544-52. PubMed ID: 15784983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The coenzyme-binding domains of glutamate dehydrogenases.
    Wootton JC
    Nature; 1974 Dec; 252(5484):542-6. PubMed ID: 4154412
    [No Abstract]   [Full Text] [Related]  

  • 20. Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H).
    Bubner P; Klimacek M; Nidetzky B
    FEBS Lett; 2008 Jan; 582(2):233-7. PubMed ID: 18082142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.