These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31301204)

  • 21. Optimization of growth medium for Sporosarcina pasteurii in bio-based cement pastes to mitigate delay in hydration kinetics.
    Williams SL; Kirisits MJ; Ferron RD
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):567-75. PubMed ID: 26795346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome analyses reveal the utilization of nitrogen sources and related metabolic mechanisms of Sporosarcina pasteurii.
    Pei D; Liu Z; Wu W; Hu B
    PLoS One; 2021; 16(2):e0246818. PubMed ID: 33561150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feeding strategies for Sporosarcina pasteurii cultivation unlock more efficient production of ureolytic biomass for MICP.
    Lapierre FM; Huber R
    Biotechnol J; 2024 Apr; 19(4):e2300466. PubMed ID: 38581094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic biocementation: harnessing Comamonas and Bacillus ureolytic bacteria for enhanced sand stabilization.
    Rajasekar A; Zhao C; Wu S; Murava RT; Wilkinson S
    World J Microbiol Biotechnol; 2024 Jun; 40(7):229. PubMed ID: 38825655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and nonureolytic bacterial strains.
    Harnpicharnchai P; Mayteeworakoon S; Kitikhun S; Chunhametha S; Likhitrattanapisal S; Eurwilaichitr L; Ingsriswang S
    Lett Appl Microbiol; 2022 Oct; 75(4):888-898. PubMed ID: 35611563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.
    Okyay TO; Rodrigues DF
    FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25764465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification.
    Omoregie AI; Ong DEL; Nissom PM
    Lett Appl Microbiol; 2019 Feb; 68(2):173-181. PubMed ID: 30537001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Low-Tech Bioreactor System for the Enrichment and Production of Ureolytic Microbes.
    Aoki M; Noma T; Yonemitsu H; Araki N; Yamaguchi T; Hayashi K
    Pol J Microbiol; 2018 Mar; 67(1):59-65. PubMed ID: 30015425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus.
    Lee YS; Kim HJ; Park W
    J Microbiol; 2017 Jun; 55(6):440-447. PubMed ID: 28551875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biotrapping Ureolytic Bacteria on Sand to Improve the Efficiency of Biocementation.
    Ugur GE; Rux K; Boone JC; Seaman R; Avci R; Gerlach R; Phillips A; Heveran C
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2075-2085. PubMed ID: 38176018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quantitative, high-throughput urease activity assay for comparison and rapid screening of ureolytic bacteria.
    Cui MJ; Teng A; Chu J; Cao B
    Environ Res; 2022 May; 208():112738. PubMed ID: 35041816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rational Control of Calcium Carbonate Precipitation by Engineered Escherichia coli.
    Liang L; Heveran C; Liu R; Gill RT; Nagarajan A; Cameron J; Hubler M; Srubar WV; Cook SM
    ACS Synth Biol; 2018 Nov; 7(11):2497-2506. PubMed ID: 30384588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimum conditions for microbial carbonate precipitation.
    Okwadha GD; Li J
    Chemosphere; 2010 Nov; 81(9):1143-8. PubMed ID: 20947128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineered applications of ureolytic biomineralization: a review.
    Phillips AJ; Gerlach R; Lauchnor E; Mitchell AC; Cunningham AB; Spangler L
    Biofouling; 2013; 29(6):715-33. PubMed ID: 23802871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of environmental factors on microbial induced calcium carbonate precipitation.
    Mortensen BM; Haber MJ; DeJong JT; Caslake LF; Nelson DC
    J Appl Microbiol; 2011 Aug; 111(2):338-49. PubMed ID: 21624021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation.
    Cuthbert MO; McMillan LA; Handley-Sidhu S; Riley MS; Tobler DJ; Phoenix VR
    Environ Sci Technol; 2013; 47(23):13637-43. PubMed ID: 24147737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomineralization of hypersaline produced water using microbially induced calcite precipitation.
    Hu L; Wang H; Xu P; Zhang Y
    Water Res; 2021 Feb; 190():116753. PubMed ID: 33360619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-sterile corn steep liquor a novel, cost effective and powerful culture media for Sporosarcina pasteurii cultivation for sand improvement.
    Babakhani S; Fahmi A; Katebi H; Ouria A; Majnouni-Toutakhane A; Ganbarov K; Kafil HS
    J Appl Microbiol; 2021 Apr; 130(4):1232-1244. PubMed ID: 33025710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of bacterial cells as nucleation centers in microbiologically induced CaCO
    Šovljanski O; Pezo L; Tomić A; Ranitović A; Cvetković D; Markov S
    J Basic Microbiol; 2021 Sep; 61(9):835-848. PubMed ID: 34314060
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Erdmann N; Kästner F; de Payrebrune K; Strieth D
    Eng Life Sci; 2022 Dec; 22(12):760-768. PubMed ID: 36514530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.