These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 31301548)
1. Assessment and validation of groundwater vulnerability to nitrate in porous aquifers based on a DRASTIC method modified by projection pursuit dynamic clustering model. Jia Z; Bian J; Wang Y; Wan H; Sun X; Li Q J Contam Hydrol; 2019 Oct; 226():103522. PubMed ID: 31301548 [TBL] [Abstract][Full Text] [Related]
2. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: a case study in Jilin City of northeast China. Huan H; Wang J; Teng Y Sci Total Environ; 2012 Dec; 440():14-23. PubMed ID: 22974721 [TBL] [Abstract][Full Text] [Related]
3. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model. Sadat-Noori M; Ebrahimi K Environ Monit Assess; 2016 Jan; 188(1):19. PubMed ID: 26650205 [TBL] [Abstract][Full Text] [Related]
4. A GIS-based approach for geospatial modeling of groundwater vulnerability and pollution risk mapping in Bou-Areg and Gareb aquifers, northeastern Morocco. Elmeknassi M; El Mandour A; Elgettafi M; Himi M; Tijani R; El Khantouri FA; Casas A Environ Sci Pollut Res Int; 2021 Oct; 28(37):51612-51631. PubMed ID: 33990916 [TBL] [Abstract][Full Text] [Related]
5. Specific vulnerability assessment of nitrate in shallow groundwater with an improved DRSTIC-LE model. Liang J; Li Z; Yang Q; Lei X; Kang A; Li S Ecotoxicol Environ Saf; 2019 Jun; 174():649-657. PubMed ID: 30875558 [TBL] [Abstract][Full Text] [Related]
6. A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Voutchkova DD; Schullehner J; Rasmussen P; Hansen B J Environ Manage; 2021 Jan; 277():111330. PubMed ID: 32971506 [TBL] [Abstract][Full Text] [Related]
7. Assessment of groundwater vulnerability in an urban area: a comparative study based on DRASTIC, EBF, and LR models. Mohammaddost A; Mohammadi Z; Rezaei M; Pourghasemi HR; Farahmand A Environ Sci Pollut Res Int; 2022 Oct; 29(48):72908-72928. PubMed ID: 35619000 [TBL] [Abstract][Full Text] [Related]
8. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Babiker IS; Mohamed MA; Hiyama T; Kato K Sci Total Environ; 2005 Jun; 345(1-3):127-40. PubMed ID: 15919534 [TBL] [Abstract][Full Text] [Related]
9. Assessment and validation of groundwater vulnerability to nitrate and TDS using based on a modified DRASTIC model: a case study in the Erbil Central Sub-Basin, Iraq. Smail RQS; Dişli E Environ Monit Assess; 2023 Apr; 195(5):567. PubMed ID: 37058175 [TBL] [Abstract][Full Text] [Related]
10. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. Baghapour MA; Fadaei Nobandegani A; Talebbeydokhti N; Bagherzadeh S; Nadiri AA; Gharekhani M; Chitsazan N J Environ Health Sci Eng; 2016; 14():13. PubMed ID: 27508082 [TBL] [Abstract][Full Text] [Related]
11. Mapping the groundwater vulnerability for pollution at the pan African scale. Ouedraogo I; Defourny P; Vanclooster M Sci Total Environ; 2016 Feb; 544():939-53. PubMed ID: 26771208 [TBL] [Abstract][Full Text] [Related]
12. Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques. Bera A; Mukhopadhyay BP; Das S Chemosphere; 2022 Nov; 307(Pt 2):135831. PubMed ID: 35944685 [TBL] [Abstract][Full Text] [Related]
13. Regional Aquifer Vulnerability and Pollution Sensitivity Analysis of Drastic Application to Dahomey Basin of Nigeria. Oke SA Int J Environ Res Public Health; 2020 Apr; 17(7):. PubMed ID: 32290197 [TBL] [Abstract][Full Text] [Related]
14. Would delineation of nitrate vulnerable zones be improved by introducing a new parameter representing the risk associated with soil permeability in the Land Use-Intrinsic Vulnerability Procedure? Arauzo M; Valladolid M; Andries DM Sci Total Environ; 2022 Sep; 840():156654. PubMed ID: 35700776 [TBL] [Abstract][Full Text] [Related]
15. Modelling hydrogeological parameters to assess groundwater pollution and vulnerability in Kashan aquifer: Novel calibration-validation of multivariate statistical methods and human health risk considerations. Samadi J Environ Res; 2022 Aug; 211():113028. PubMed ID: 35283077 [TBL] [Abstract][Full Text] [Related]
16. Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. Noori R; Ghahremanzadeh H; Kløve B; Adamowski JF; Baghvand A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(1):89-100. PubMed ID: 30596317 [TBL] [Abstract][Full Text] [Related]
17. Groundwater vulnerability to pollution mapping of Ranchi district using GIS. Krishna R; Iqbal J; Gorai AK; Pathak G; Tuluri F; Tchounwou PB Appl Water Sci; 2015 Dec; 5(4):345-358. PubMed ID: 26557470 [TBL] [Abstract][Full Text] [Related]
18. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal. Shrestha S; Semkuyu DJ; Pandey VP Sci Total Environ; 2016 Jun; 556():23-35. PubMed ID: 26971207 [TBL] [Abstract][Full Text] [Related]
19. Application of Groundwater Vulnerability Overlay and Index Methods to the Jijel Plain Area (Algeria). Boufekane A; Saighi O Ground Water; 2018 Jan; 56(1):143-156. PubMed ID: 28833070 [TBL] [Abstract][Full Text] [Related]
20. Assessment of groundwater vulnerability to nitrates using the GIS-based DRASTIC and SI methods: a case study in Zacharo area, Greece. Panagopoulos GP; Katsanou KN; Barouchas PE Environ Monit Assess; 2023 Jan; 195(2):286. PubMed ID: 36626097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]