These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31301572)

  • 21. Composition and key-influencing factors of bacterial communities active in sulfur cycling of soda lake sediments.
    Li X; Yang M; Mu T; Miao D; Liu J; Xing J
    Arch Microbiol; 2022 May; 204(6):317. PubMed ID: 35567694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Succession of sulfur bacteria during decomposition of cyanobacterial bloom biomass in the shallow Lake Nanhu: An ex situ mesocosm study.
    Chen M; Jiao YY; Zhang YQ; Krumholz LR; Ren JX; Li ZH; Zhao LY; Song HT; Lu JD
    Chemosphere; 2020 Oct; 256():127101. PubMed ID: 32450355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of Acidithiobacillus caldus from a sulfur-oxidizing bacterial biosensor and its role in detection of toxic chemicals.
    Hassan SH; Van Ginkel SW; Kim SM; Yoon SH; Joo JH; Shin BS; Jeon BH; Bae W; Oh SE
    J Microbiol Methods; 2010 Aug; 82(2):151-5. PubMed ID: 20580751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Granulation of sulfur-oxidizing bacteria for autotrophic denitrification.
    Yang W; Lu H; Khanal SK; Zhao Q; Meng L; Chen GH
    Water Res; 2016 Nov; 104():507-519. PubMed ID: 27589211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor.
    Hassan SH; Van Ginkel SW; Oh SE
    Chemosphere; 2013 Jan; 90(3):965-70. PubMed ID: 22840537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of sulfur-oxidizing inoculants and nitrate on regulating sulfur functional genes and bacterial community at the thermophilic compost stage.
    Chen L; Li W; Zhao Y; Zhang S; Meng L
    J Environ Manage; 2023 Jan; 326(Pt A):116733. PubMed ID: 36372033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sulfide removal characteristics, pathways and potential application of a novel chemolithotrophic sulfide-oxidizing strain, Marinobacter sp. SDSWS8.
    Dou L; Zhang M; Pan L; Liu L; Su Z
    Environ Res; 2022 Sep; 212(Pt A):113176. PubMed ID: 35364039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep.
    Stevens EW; Bailey JV; Flood BE; Jones DS; Gilhooly WP; Joye SB; Teske A; Mason OU
    Geobiology; 2015 Nov; 13(6):588-603. PubMed ID: 26462132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfide oxidation and nitrate reduction for potential mitigation of H2S in landfills.
    Fang Y; Du Y; Feng H; Hu LF; Shen DS; Long YY
    Biodegradation; 2015 Apr; 26(2):115-26. PubMed ID: 25680916
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of sulphide and nitrate removal from synthetic wastewater by pure and mixed cultures of nitrate-reducing, sulphide-oxidizing bacteria.
    Watsuntorn W; Ruangchainikom C; Rene ER; Lens PNL; Chulalaksananukul W
    Bioresour Technol; 2019 Jan; 272():40-47. PubMed ID: 30308406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfur-oxidizing bacteria in environmental technology.
    Pokorna D; Zabranska J
    Biotechnol Adv; 2015 Nov; 33(6 Pt 2):1246-59. PubMed ID: 25701621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor.
    Chen X; Liu Y; Peng L; Yuan Z; Ni BJ
    Sci Rep; 2016 Apr; 6():25114. PubMed ID: 27112502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.
    Lin S; Krause F; Voordouw G
    Appl Microbiol Biotechnol; 2009 May; 83(2):369-76. PubMed ID: 19290520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulfide production and oxidation by heterotrophic bacteria under aerobic conditions.
    Xia Y; Lü C; Hou N; Xin Y; Liu J; Liu H; Xun L
    ISME J; 2017 Dec; 11(12):2754-2766. PubMed ID: 28777380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of H2S removal and microbial community in landfill cover soils.
    Xia FF; Zhang HT; Wei XM; Su Y; He R
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18906-17. PubMed ID: 26206130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms.
    Okabe S; Ito T; Sugita K; Satoh H
    Appl Environ Microbiol; 2005 May; 71(5):2520-9. PubMed ID: 15870342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adding organics to enrich mixotrophic sulfur-oxidizing bacteria under extremely acidic conditions-A novel strategy to enhance hydrogen sulfide removal.
    Jia T; Zhang L; Sun S; Zhao Q; Peng Y
    Sci Total Environ; 2023 Jan; 854():158768. PubMed ID: 36108867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sulfide-oxidizing activity and bacterial community structure in a fluidized bed reactor from a zero-discharge mariculture system.
    Cytryn E; Minz D; Gelfand I; Neori A; Gieseke A; De Beer D; Van Rijn J
    Environ Sci Technol; 2005 Mar; 39(6):1802-10. PubMed ID: 15819240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developing a biofilm of sulfur oxidizing bacteria, starting-up and operating a bioscrubber treating H2S.
    Moussavi G; Naddafi K; Mesdaghinia A
    Pak J Biol Sci; 2007 Mar; 10(5):701-9. PubMed ID: 19069851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis of microbial communities from different full-scale haloalkaline biodesulfurization systems.
    Gupta S; Plugge CM; Klok JBM; Muyzer G
    Appl Microbiol Biotechnol; 2022 Feb; 106(4):1759-1776. PubMed ID: 35147744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.